Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.
Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K 17/02, 27.04.2006).
Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).
В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды.
Таким образом, в известном способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, конденсируется на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, причем при конденсации пара отопительных отборов осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости.
Основным недостатком аналога и прототипа является то, что утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.
Кроме этого, недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки.
Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.
Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии.
Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией (ТЭС), включающем поступление отработавшего пара из паровой турбины в паровое пространство конденсатора для конденсации на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины подают в паровое пространство верхнего и нижнего сетевых подогревателей для конденсации на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, причем при конденсации пара отопительных отборов осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, согласно настоящему изобретению, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.
Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в сетевых подогревателях и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, сетевые подогреватели и конденсационную установку.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - теплообменник-конденсатор,
9 - конденсатный насос,
10 - верхний сетевой подогреватель,
11 - нижний сетевой подогреватель,
12 - конденсационная установка,
13 - паровая турбина с производственным отбором пара,
14 - электрогенератор паровой турбины с производственным отбором пара,
15 - конденсатор паровой турбины с производственным отбором пара,
16 - конденсатный насос конденсатора паровой турбины с производственным отбором пара.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, которые между собой соединены по нагреваемой среде.
В тепловую электрическую станцию введены конденсационная установка 12 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Конденсационная установка 12 содержит последовательно соединенные паровую турбину 13 с производственным отбором пара, имеющую электрогенератор 14, конденсатор 15 паровой турбины с производственным отбором пара и конденсатный насос 16 конденсатора паровой турбины с производственным отбором пара.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом нижнего сетевого подогревателя 11, а выход верхнего сетевого подогревателя 10 соединен по нагреваемой среде с входом конденсатора 15 паровой турбины с производственным отбором пара, выход конденсатора 15 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.
Способ включает в себя поступление отработавшего пара из паровой турбины 1 в паровое пространство конденсатора 2 для конденсации на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины 1 подают в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей для конденсации на поверхности подогреваемых трубок сетевых подогревателей 10 и 11, внутри которых протекает охлаждающая жидкость, причем при конденсации пара отопительных отборов осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 при помощи охлаждающей жидкости.
Отличием предлагаемого способа является то, что в тепловой электрической станции используют конденсационную установку 12, имеющую конденсатор 15 паровой турбины 13 с производственным отбором пара, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 13 конденсационной установки 12 осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают в нижнем 11 сетевом подогревателе паровой турбины 1, нагревают в верхнем 10 сетевом подогревателе паровой турбины 1, испаряют и перегревают в конденсаторе 15 паровой турбины 13 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.
В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.
Пример конкретного выполнения
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Преобразование низкопотенциальной тепловой энергии пара отопительных отборов из паровой турбины 1 и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 13, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана С3Н8, который последовательно направляют на нагрев в начале в нижний сетевой подогреватель 11, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 365 K, а затем в верхний сетевой подогреватель 10, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 400 K.
Пар, поступающий из отопительных отборов паровой турбины 1 в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей, конденсируется на поверхности подогреваемых трубок, внутри которых протекает сжиженный пропан C3H8.
В процессе конденсации пара отопительных отборов в нижнем сетевом подогревателе 11 и в верхнем сетевом подогревателе 10 паровой турбины 1, происходит нагрев сжиженного пропана С3Н8 до критической температуры 369,89 K при сверхкритическом давлении от 4,2512 МПа до 13 МПа, и далее его направляют на испарение и перегрев в конденсатор 15 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 13 при температуре около 573 K.
Пар, поступающий из производственного отбора паровой турбины 13 в паровое пространство конденсатора 15, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 13 передается соединенному на одном валу основному электрогенератору 14.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 16 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.
В процессе конденсации пара производственного отбора в конденсаторе 15 паровой турбины, происходит испарение сжиженного пропана С3Н8 и дальнейший его перегрев до сверхкритической температуры от 369,89 K до 420 K при сверхкритическом давлении от 4,2512 МПа до 13 МПа, который направляют на расширение в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8 имеет температуру около 288 K с влажностью, не превышающей 12%.
Далее при снижении температуры газообразного пропана С3Н8, происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 K до 283,15 K.
После теплообменника-конденсатора 8 в сжиженном состоянии пропан С3Н8 направляют для сжатия в конденсатный насос 9 теплового двигателя.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Использование в работе тепловой электрической станции конденсационной установки 12 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя 5 с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.
Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии.
Способ заключается в том, что отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, конденсируется на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость. Для повышения коэффициента полезного действия используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя. 2 з.п. ф-лы, 1 ил.
1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией (ТЭС), включающий поступление отработавшего пара из паровой турбины в паровое пространство конденсатора для конденсации на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины подают в паровое пространство верхнего и нижнего сетевых подогревателей для конденсации на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, причем при конденсации пара отопительных отборов осуществляют утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, отличающийся тем, что в тепловой электрической станции используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ | 2004 |
|
RU2269014C2 |
Теплофикационная паросиловая установка | 1987 |
|
SU1451290A1 |
СПОСОБ И УСТАНОВКА ДЛЯ БЕСПЕРЕБОЙНОГО ЭНЕРГОСНАБЖЕНИЯ | 2002 |
|
RU2296232C2 |
US 8537961 B2, 17.09.2013 |
Авторы
Даты
2015-09-10—Публикация
2014-05-06—Подача