УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ФОТОНОВ И ИОНИЗИРУЮЩИХ ЧАСТИЦ С ОДНОВРЕМЕННЫМ ОПРЕДЕЛЕНИЕМ, ДЛЯ КАЖДОГО ФОТОНА ИЛИ ИОНИЗИРУЮЩЕЙ ЧАСТИЦЫ, НАПРАВЛЕНИЯ ДВИЖЕНИЯ В КАНАЛЕ, ЗАПОЛНЕННОМ ТЕКУЧЕЙ СРЕДОЙ Российский патент 2015 года по МПК G01T1/20 

Описание патента на изобретение RU2562915C2

Область техники, к которой относится изобретение.

Изобретение относится к детектирующему устройству для фотонов или ионизирующих частиц, в котором имеется детектирующая система с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор предназначен для генерации ячейковых зарядов на этой считывающей поверхности при улавливании фотонов или ионизирующих частиц, а напротив считывателя электрического заряда к сцинтиллятору присоединен коллиматор, предназначенный для пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц, имеющих направление движения, отличающееся от направления продольной оси коллиматора.

Уровень техники.

В области каротажа скважин и сбора данных о скважинах уровень техники основан, в значительной степени, на использовании фотоэлектронных умножителей или фотодиодов, соединенных с кристаллами сцинтиллятора, такого как йодид калия или йодид цезия.

Когда сборка из соединенных кристалла сцинтиллятора и фотоэлектронного умножителя подвергается воздействию ионизирующего излучения (такого как рентгеновское излучение, гамма-излучение или излучение частиц), падающее излучение будет преобразовываться в неионизирующие «оптические» фотоны в кристалле сцинтиллятора за счет процесса, который включает рассеяние, отдачу ядра и/или флуоресценцию. Оптические фотоны затем детектируются, или, иначе говоря, подсчитываются с помощью фотоэлектронного умножителя, который соединен с кристаллом сцинтиллятора. Как упоминалось выше, вместо фотоэлектронного умножителя для той же цели может быть использован фотодиод.

Типовым применением таких сборок в скважине является каротаж скважины. В таких сборках является желательным, чтобы ионизирующее излучение было настолько обильным, насколько это возможно, с тем чтобы сбор фотонов был настолько обильным, насколько это возможно, для уточнения статистического анализа собираемых данных и тем самым уменьшения ошибок в показаниях. По этой причине и ввиду цилиндрической формы, которую имеет большинство инструментов для использования в скважинах, такой детектор обычно сформирован в виде цилиндрического сцинтиллятора с фотоэлектронным умножителем или фотодиодом, присоединенным к одному его концу. Концепция состоит в доведении до максимума сбора в единице объема фотонов, движущихся радиально внутрь к инструменту в направлении, перпендикулярном продольной оси скважины. Даже несмотря на то, что сцинтилляторы находятся во всеобщем использовании, сцинтиллятор имеет физические свойства, которые не делают его хорошо подходящим для максимального сбора входящих фотонов. Когда входящая ионизирующая частица или входящий ионизирующий фотон взаимодействует с материалом сцинтиллятора, результатом является выход генерируемых сцинтиллятором фотонов с меньшей энергией и с результирующим направлением, статистически распределенным вокруг точки взаимодействия, или, иначе говоря, направление выходящего оптического фотона обычно отличается от направления падающего фотона и зависит от конкретного взаимодействия между фотоном/частицей и атомами в сцинтилляторе. На основании этого является очевидным, что статистически генерируемые сцинтиллятором или оптические фотоны выходят из сцинтиллятора во всех направлениях независимо от направления падающих фотонов или ионизирующих частиц. Поскольку фотоэлектронный умножитель или фотодиод прикреплен к одному концу сцинтиллятора, максимальная детектирующая способность устройства ограничена частью оптических фотонов, входящих в фотоэлектронный умножитель или фотодиод. На основании того факта, что площадь поверхности цилиндра составляет 2πr2+2πrh, где r - радиус цилиндра, a h - его высота, доля оптических фотонов, достигающих фотоэлектронного умножителя или фотодиода, выражается как πr2/(2πr2+2πrh), что дает в результате 33%-ую детекцию для сцинтилляторного цилиндра, в котором h=r, 25%-ую детекцию для сцинтилляторного цилиндра, в котором h=2r, и 14%-ую детекцию для сцинтилляторного цилиндра, в котором h=3r. Доля детекции достигает 100%, лишь когда высота цилиндра равна нулю. Очевидным решением этой проблемы является помещение фотоэлектронного умножителя или фотодиода на обоих концах сцинтилляторного цилиндра. Даже несмотря на то, что это дает в результате удвоение эффективности, эффективность сбора будет оставаться ниже 100%.

Раскрытие изобретения.

Задачей изобретения является устранение или уменьшение по меньшей мере одного из недостатков уровня техники или, по меньшей мере, создание эффективной альтернативы уровню техники.

Задача решена с помощью признаков, которые раскрыты в нижеприведенном описании и следующей за ним формуле изобретения.

В дальнейшем описании термин «фотон» используется как собирательное понятие для фотонов и других ионизирующих частиц.

Изобретением предлагается устройство, которое значительно повышает эффективность улавливания и детекции фотонов, тем самым предоставляя пользователю такого оборудования увеличенную гибкость: операцию можно выполнять быстрее без снижения статистического качества, или операцию можно выполнять за то же время, что и раньше, но со значительным увеличением сбора данных для повышения точности результатов измерений. За счет дополнительного обеспечения возможности определения направления к месту происхождения падающего излучения в скважине пользователь получает возможность создавать истинную 360-градусную картину ствола скважины и окружающих горных пород.

В нефтегазовой промышленности, особенно в каротаже плотностей, каротаже в процессе бурения, скважинных измерениях в процессе бурения и в каротаже скважины было бы очень выгодно иметь возможность повышения эффективности детекции для фотонов, а также иметь возможность определять направление их вхождения.

Предлагается детектирующее устройство, имеющее большую эффективность в сборе и регистрации фотонов, которые движутся внутри цилиндрического объема, и, в то же время, обеспечивающее определение направления к месту происхождения фотонов. Фотоны используются в качестве детекторов для каротажа скважины.

Предлагается цилиндрообразное тело с многоугольной периферийной поверхностью. Каждый сегмент периферийной поверхности содержит сцинтиллятор некоторого объема, который используется для улавливания ионизирующих фотонов и создания под их действием оптических фотонов, которые могут регистрироваться детектором, например, считывателем электрического заряда. Посредством коллиматоров сегменты периферийной поверхности заслонены от падающих фотонов, которые имеют направление движения, отклоненное от перпендикуляра к поверхности указанного сегмента периферийной поверхности. Тем самым предоставляется информация, касающаяся направления к месту происхождения падающих фотонов.

Детектирующее устройство содержит следующие основные компоненты.

а. Модульный набор детектирующих сборок, выполненных в форме многогранников, причем активные поверхности детектирующих сборок проходят вокруг вписанной окружности и по касательной к ней и смонтированы на крепежных стержнях, расположенных радиально. Детектирующие сборки соединены с подходящей системой обработки сигналов.

b. Система элементов выборочного пропускания, которая расположена снаружи каждой детектирующей сборки и выполнена таким образом, что каждый детектирующий элемент принимает лишь падающее излучение или падающие частицы с направлением, перпендикулярным детектирующей сборке.

с. Крепежные стержни, которые используются в качестве проводящих тепло средств, для отведения тепла от детектирующих сборок, если это необходимо ввиду неблагоприятных температур окружающей среды.

Изобретение относится, в частности, к детектирующему устройству для фотонов или ионизирующих частиц, в котором имеется детектирующая система с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор предназначен для генерации ячейковых зарядов на считывающей поверхности при улавливании фотонов или ионизирующих частиц. Устройство имеет присоединенный к сцинтиллятору напротив считывателя электрического заряда коллиматор, который предназначен для пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц, имеющих направление движения, отличающееся от направления продольной оси коллиматора, и несколько детектирующих систем, расположенных на равных расстояниях друг от друга вокруг центральной оси детектирующей сборки.

Детектирующие блоки, формирующие одну детектирующую систему, могут иметь одинаковые направления продольных осей всех коллиматоров.

Несколько детектирующих систем могут равномерно отстоять друг от друга по вписанной окружности и быть ориентированы касательно к ней.

Детектирующие системы могут быть соединены со средствами для отведения тепла от детектирующих систем к проводнику тепла. Предпочтительно, детектирующие системы расположены на каркасе, посредством которого проводник тепла образует поддерживающую конструкцию.

Детектирующее устройство может быть образовано стопкой, сформированной из нескольких детектирующих сборок, при этом каждая детектирующая сборка повернута относительно соседней детектирующей сборки или соседних детектирующих сборок.

Разность в угле поворота двух соседних детектирующих сборок может быть одинаковой для всех детектирующих сборок устройства.

Считыватель электрического заряда может представлять собой точку на формирователе сигнала изображения.

Формирователь сигнала изображения может быть выбран из группы, состоящей из формирователей сигналов изображения CCD-, LDC- и CMOS-типов.

Детектирующие сборки могут быть расположены в непроницаемой для текучей среды емкости, представляющей собой тело вращения, которая формирует радиопрозрачный барьер относительно окружающей среды.

Устройство может включать источник излучения, расположенный на расстоянии от детектирующих сборок и отделенный в осевом направлении детектирующего устройства от детектирующих сборок задерживающим излучение экраном.

Краткое описание чертежей.

Далее приведено описание примера предпочтительного варианта осуществления, который изображен на прилагаемых чертежах, на которых

фигура 1а показывает цилиндрическое тело со сцинтиллятором и с фотоэлектронным умножителем или фотодиодом согласно уровню техники;

падающие фотоны взаимодействуют с атомами в сцинтилляторе так, что имеется рассеяние оптических фотонов,

фигура 1b показывает разобранный детектирующий блок, включающий коллиматор, в котором падающие фотоны блокируются, если они не имеют направление, которое соответствует направлению оси коллиматора,

фигура 2 показывает в перспективе стопку из нескольких одинаковых детектирующих сборок, в которой каждая детектирующая сборка повернута относительно соседней детектирующей сборки/соседних детектирующих сборок; коллиматоры удалены для большей наглядности,

фигура 3 показывает поперечное сечение детектирующей сборки, выполненной из шести детектирующих систем, расположенных в форме шестиугольника вокруг центрального проводника тепла,

фигура 4 показывает вид с конца детектирующего устройства согласно изобретению, и

фигура 5 показывает внутреннюю часть емкости, которая вмещает детектирующее устройство вместе с источником излучения, отделенным от детектирующего устройства задерживающим излучение экраном, и которая расположена в стволе скважины.

Осуществление изобретения.

На фигуре 1а схематично показан сцинтиллятор S, в котором, согласно уровню техники, падающие фотоны Р, имеющие случайные направления движения (показанные большими стрелками), воздействуют на атомы сцинтиллятора S так, что формируется большое количество оптических фотонов ОР со случайными направлениями движения (показанными малыми стрелками). Некоторые оптические фотоны ОР достигают принимающей поверхности фотодиода или фотоэлектронного умножителя PD и генерируют регистрацию, в то время как другие оптические фотоны ОР теряются в окружающем пространстве.

На фигуре 1b схематично показан в разобранном виде детектирующий блок На, снабженный считывателем 111 электрического заряда, сцинтиллятором 112 и коллиматором 113, позволяющим проходить лишь тем фотонам Р, которые имеют направление движения, совпадающее с направлением продольной оси А коллиматора 113. Фотоны Р', которые были пропущены коллиматором, воздействуют на материал сцинтиллятора 112, например, теллурид кадмия, через который было установлено электрическое поле (не показано), и множество оптических фотонов ОР формируется по принципу прямого преобразования, причем оптические фотоны ОР движутся в направлении поля и улавливаются на считывающей поверхности 111 а считывателя 111 электрического заряда. Считыватель 111 электрического заряда может представлять собой формирователь сигнала изображения CCD-, LDC- или CMOS-типа, соединенный со сцинтиллятором 112. В предпочтительном варианте осуществления детектирующая система 11 выполнена из множества таких детектирующих блоков На, тем самым образуя многопиксельный блок. В дальнейшем описании термин «детектирующая система 11, 111-116» описывает многопиксельный блок.

Детектирующая сборка 1 (см., в частности, фигуру 3) включает многоугольный каркас 12, в данном случае показанный шестиугольным, в котором от проводника 123 тепла, расположенного в центре, отходят в радиальном направлении несколько крепежных стержней 122, на наружных концевых частях которых прикреплены имеющие форму пластин основания 121. На каждом из оснований 121 смонтирована детектирующая система 111, …, 116. Помимо формирования опоры для детектирующих систем 111, …, 116, каркас 12 функционирует в качестве проводника тепла для детектирующих систем 111, …, 116. Каждая из детектирующих систем 11 имеет детектирующий коридор 13. Проводник 123 тепла расположен на продольной оси В детектирующего устройства D и как можно дальше от областей детектирующего устройства D, которые имеют наивысшую температуру, обусловленную контактом с текучей средой 62 скважины. Проводник 123 тепла может охлаждаться любыми существующими средствами, например, элементом Пельтье (не показан), для обеспечения наилучшего возможного охлаждения детектирующих систем 111, …, 116.

На фигуре 2 показано детектирующее устройство D, снабженное четырьмя детектирующими сборками 11-14, соединенными в стопку, при этом каждая из детектирующих сборок 11-14 повернута относительно соседней детектирующей сборки/соседних детектирующих сборок 11-14. Из соображений наглядности коллиматоры 113 не показаны на этой фигуре.

На фигуре 4 показана суммарная область покрытия детектирующего устройства D, когда оно включает четыре детектирующие сборки 11-14.

В одном варианте осуществления (см. фигуру 5) детектирующее устройство D расположено симметрично вокруг продольной оси В в емкости 2, формирующей радиопрозрачный барьер против текучей среды 62 скважины в стволе 6 скважины, в котором детектирующее устройство D с его емкостью 2 было спозиционировано для каротажа. Ствол 6 скважины определен по существу известным способом в подземных породах 7 с помощью обсадной колонны 61. Емкость 2 соответствующим образом включает искусственный источник 3 излучения. Кроме того, между источником 3 излучения и детектирующим устройством D расположен задерживающий излучение экран 4, а передающий сигнал кабель 5 соединяет детектирующее устройство D и наземное оборудование (не показано).

Когда ионизирующие фотоны Р отражаются от обсадной колонны 61, текучей среды 62 скважины или подземных пород 7 и проходят сквозь радиопрозрачную емкость 2, они проходят через коллиматор 113 или останавливаются им, в зависимости от направления движения этих ионизирующих фотонов Р. Если направление совпадает с продольной осью А коллиматора 113, фотон Р пройдет, в противном случае он будет остановлен процессом рассеяний структурой коллиматора 113, который сформирован в предпочтительном варианте осуществления из вольфрама либо иного материала или сочетания материалов с высоким атомным числом.

Неостановленные падающие (коллимированные) фотоны Р' воздействуют на сцинтиллятор 112, к которому приложено электрическое поле. В предпочтительном варианте осуществления в качестве сцинтиллятора используется теллурид кадмия, поскольку он обладает свойством переноса оптических фотонов от одного конца структуры к другому, когда к ней приложено электрическое поле. Таким образом, образуется «поток» оптических фотонов от одного конца сцинтиллятора к его другому концу. Когда падающий ионизирующий фотон Р' встречается со сцинтиллятором 112, выбивается большое количество оптических фотонов, движущихся к «дефицитной стороне», где они осаждаются на считывающую поверхность 111 а считывателя 111 электрического заряда, которая находится в тесном контакте со сцинтиллятором 112. Хотя в примере предпочтительного варианта осуществления используется теллурид кадмия, может быть использовано любое вещество, которое способно обеспечивать перенос оптических фотонов и улавливание падающих фотонов. Поскольку величина ячейкового заряда, который образуется на считывающей поверхности 111 а считывателя 111 электрического заряда, зависит от начальной энергии падающего фотона Р', возможно определить уровень энергии каждого уловленного фотона Р', чтобы с помощью этого выполнить спектрографическое измерение путем суммирования данных от нескольких падающих фотонов Р'.

Считыватель 111 электрического заряда, который в предпочтительном варианте осуществления относится к CMOS-типу, но может также относиться к CCD- или LDC-типу, активируется электронно много раз в секунду по мере того, как электроны, которые аккумулировались на считывающей поверхности 111 а вследствие улавливания фотонов, оттягиваются от этой поверхности. Результирующее показание записывается местно в набор данных регистрационной записи для соответствующего периода времени на носитель информации (не показан), который формирует часть системы обработки сигналов (не показана), по существу, известного типа для идентификации каждого блока и каждого показания.

Каждый детектирующий блок На, который образован совокупностью считывателя 111 электрического заряда, сцинтиллятора 112 и коллиматора 113, представляет один пиксель в двумерном массиве множества таких пикселей, который (массив) образует детектирующую систему 111, …, 116.

За счет объединения в стопку детектирующих сборок 11-14 в продольном направлении детектирующего устройства D и их поворота относительно друг друга вокруг продольной оси обеспечивается угол взаимного поворота Δr между детектирующими сборками 11-14. Тем самым обеспечивается большая суммарная зона детекции, внутри которой детекция фотонов и частиц, имеющих радиальное направление, которое не параллельно оси одного из коллиматоров 113, предотвращена, и тем самым определяется радиальное направление к месту происхождения падающих коллимированных фотонов Р'.

Похожие патенты RU2562915C2

название год авторы номер документа
ДВУМЕРНЫЙ ДЕТЕКТОР ИОНИЗИРУЮЩИХ ЧАСТИЦ 2003
  • Дисдье Лоран
  • Федотов Александр
RU2332688C2
Миниатюрный детектор фотонного излучения 2023
  • Швалев Николай Германович
  • Швалев Александр Николаевич
  • Гордеев Александр Николаевич
  • Дедок Татьяна Михайловна
RU2811667C1
Двухканальный сцинтилляционный счетчик ионизирующего излучения 2018
  • Вуколов Артем Владимирович
  • Черепенников Юрий Михайлович
  • Гоголев Алексей Сергеевич
RU2705933C1
СПОСОБ ПОЛУЧЕНИЯ ПРОЕКЦИОННЫХ РЕНТГЕНОВСКИХ СНИМКОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Бару Семен Ефимович
  • Григорьев Дмитрий Николаевич
  • Поросев Вячеслав Викторович
  • Савинов Геннадий Алексеевич
RU2545338C1
УСОВЕРШЕНСТВОВАННАЯ ТЕМПЕРАТУРНАЯ КОМПЕНСАЦИЯ И СХЕМА УПРАВЛЕНИЯ ДЛЯ ОДНОФОТОННЫХ СЧЕТЧИКОВ 2010
  • Фрах Томас
RU2518589C2
УСТРОЙСТВО ДЛЯ ПОИСКА ФОТОННЫХ ИСТОЧНИКОВ 1999
  • Власенко А.Н.
  • Демченков В.П.
  • Клочко Р.С.
  • Ольков М.С.
  • Шелепков Е.А.
RU2169380C1
ДЕТЕКТОР ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ 2022
  • Ткачева Татьяна Васильевна
RU2795377C1
ДЕТЕКТОР 2008
  • Боголюбов Евгений Петрович
  • Микеров Виталий Иванович
  • Кошелев Александр Павлович
RU2373555C2
СПОСОБ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 2011
  • Лазарев Сергей Григорьевич
  • Кибкало Алексей Алексеевич
  • Елин Владимир Александрович
RU2484554C1
ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 2007
  • Шульгин Борис Владимирович
  • Коссе Александр Иванович
  • Райков Дмитрий Вячеславович
  • Черепанов Александр Николаевич
  • Ищенко Алексей Владимирович
  • Малиновский Георгий Петрович
RU2347241C1

Иллюстрации к изобретению RU 2 562 915 C2

Реферат патента 2015 года УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ФОТОНОВ И ИОНИЗИРУЮЩИХ ЧАСТИЦ С ОДНОВРЕМЕННЫМ ОПРЕДЕЛЕНИЕМ, ДЛЯ КАЖДОГО ФОТОНА ИЛИ ИОНИЗИРУЮЩЕЙ ЧАСТИЦЫ, НАПРАВЛЕНИЯ ДВИЖЕНИЯ В КАНАЛЕ, ЗАПОЛНЕННОМ ТЕКУЧЕЙ СРЕДОЙ

Изобретение относится к детектирующему устройству для фотонов или ионизирующих частиц. Детектирующее устройство для фотонов или ионизирующих частиц содержит детектирующую систему с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор выполнен с возможностью генерации ячейковых зарядов на считывающей поверхности при улавливании фотонов или ионизирующих частиц; коллиматор, присоединенный к сцинтиллятору напротив считывателя электрического заряда, выполненный с возможностью пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц (Р'), имеющих направление движения, отличающееся от направления продольной оси коллиматора; и несколько детектирующих систем, равномерно отстоящих друг от друга вокруг центральной оси детектирующей сборки, при этом детектирующее устройство сформировано в виде стопки из нескольких детектирующих сборок, каждая из которых повернута на угол вокруг центральной оси детектирующей сборки относительно соседней детектирующей сборки или соседних детектирующих сборок. Технический результат - повышение эффективности улавливания и детектирования фотонов. 9 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 562 915 C2

1. Детектирующее устройство (D) для фотонов или ионизирующих частиц (Р), содержащее детектирующую систему (11) с несколькими детектирующими блоками (11а), каждый из которых включает сцинтиллятор (112), соединенный со считывающей поверхностью (111а) считывателя (111) электрического заряда, при этом сцинтиллятор (112) выполнен с возможностью генерации ячейковых зарядов на считывающей поверхности (111а) при улавливании фотонов или ионизирующих частиц (Р); коллиматор (113), присоединенный к сцинтиллятору (112) напротив считывателя (111) электрического заряда, выполненный с возможностью пропускания фотонов или ионизирующих частиц (Р'), имеющих направление движения, совпадающее с продольной осью (А) коллиматора (113), и остановки фотонов или ионизирующих частиц (Р'), имеющих направление движения, отличающееся от направления продольной оси (А) коллиматора (113); и несколько детектирующих систем (111-116), равномерно отстоящих друг от друга вокруг центральной оси (В) детектирующей сборки (1), отличающееся тем, что детектирующее устройство (D) сформировано в виде стопки из нескольких детектирующих сборок (11-14), каждая из которых повернута на угол (Δr) вокруг центральной оси (В) детектирующей сборки (1) относительно соседней детектирующей сборки или соседних детектирующих сборок (11-14).

2. Устройство по п.1, отличающееся тем, что детектирующие блоки (11а), формирующие детектирующую систему (11), имеют одинаковые направления продольных осей (А) всех коллиматоров (113).

3. Устройство по п.2, отличающееся тем, что детектирующие системы (111-116) равномерно отстоят друг от друга по вписанной окружности и ориентированы касательно к ней.

4. Устройство по п.1, отличающееся тем, что детектирующие системы (111-116) соединены со средствами (122) для отведения тепла от детектирующих систем (111-116) к теплопроводной структуре (123).

5. Устройство по п.1, отличающееся тем, что детектирующие системы (111-116) расположены на каркасе (12), посредством которого теплопроводная структура (123) образует поддерживающую конструкцию.

6. Устройство по п.5, отличающееся тем, что разность в угле (Δr) поворота двух соседних детектирующих сборок (11-14) одинакова для всех детектирующих сборок (11-14) в детектирующем устройстве (D).

7. Устройство по п.1, отличающееся тем, что считыватель (111) электрического заряда представляет собой точку на формирователе сигнала изображения.

8. Устройство по п.7, отличающееся тем, что формирователь сигнала изображения выбран из группы, состоящей из формирователей сигнала изображения CCD-, LDC- и CMOS-типов.

9. Устройство по п.1, отличающееся тем, что детектирующие сборки (11-14) расположены в непроницаемой для текучей среды емкости (2), представляющей собой тело вращения, которая формирует радиопрозрачный барьер относительно окружающей среды (62).

10. Устройство по п.1, отличающееся тем, что включает источник (3) излучения, расположенный на расстоянии от детектирующих сборок (11-14) и отделенный в осевом направлении детектирующего устройства (D) от детектирующих сборок (11-14) задерживающим излучение экраном (4).

Документы, цитированные в отчете о поиске Патент 2015 года RU2562915C2

US 2009001273 A1, 01.01.2009
УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ РАСПРЕДЕЛЕНИЯ РАДИОАКТИВНЫХ ПРЕПАРАТОВ 1993
  • Архипов В.К.
  • Марков С.В.
  • Буглак А.Л.
RU2082182C1
US 20050285046 A1, 29.12.2005
US 6801258 B1, 05.10.2004
US 3882309 A, 06.05.1975

RU 2 562 915 C2

Авторы

Тигью Фил

Даты

2015-09-10Публикация

2011-03-22Подача