ПРЕОБРАЗОВАТЕЛЬ ПОСТОЯННОГО НАПРЯЖЕНИЯ В ТРЕХФАЗНОЕ КВАЗИСИНУСОИДАЛЬНОЕ С ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИЕЙ Российский патент 2015 года по МПК H02M7/00 H02M7/48 H02M7/538 

Описание патента на изобретение RU2563247C1

Изобретение относится к области силовой преобразовательной техники и может быть использовано при построении трехфазных инверторов напряжения в системах как основного, так и резервного электропитания автономных объектов, где в качестве первичного источника используется, например, аккумуляторная батарея с уровнем напряжения, требующим повышения его трансформаторным путем.

Известен преобразователь постоянного напряжения в трехфазное квазисинусоидальное, в принципе позволяющий решить данную задачу с некоторыми ограничениями - см. рис.9.12 на стр.335 в [1]: Моин B.C. Стабилизированные транзисторные преобразователи. - М.: Энергоатомиздат, 1986. - 376 с. Его силовая часть содержит два трехфазных инверторных моста, выходы каждого из которых подключены к первичным трехфазным обмоткам одного из двух трехфазных трансформаторов. При этом два комплекта вторичных трехфазных обмоток у одного из трансформаторов выполнены по схеме «зигзаг» и соединены пофазно последовательно с комплектом вторичных трехфазных обмоток второго трансформатора, образуя выходные выводы трехфазного инвертора. Его фазные выходные напряжения имеют многоступенчатую форму (в виде 6 равновременных интервалов его квантования на полупериоде) с коэффициентом гармоник КГ(U)=0,15. Ближайшей высшей гармоникой в спектре напряжения, на которую рассчитывается выходной фильтр, является 11-я гармоника. Известно, что установленная мощность этого фильтра тем меньше, чем больше номер этой высшей гармоники. При выходной частоте 50 Гц масса фильтра здесь оказывается значительной - это первый недостаток данного решения. Второй его недостаток заключается в ограниченных функциональных возможностях - в [1] отсутствует информация о возможности регулирования выходного напряжения в этом инверторе, так что эта задача должна решаться дополнительно.

Наиболее близким по технической сущности решением является преобразователь постоянного напряжения в трехфазное квазисинусоидальное с широтно-импульсной модуляцией, описанный на стр.5÷11 в [2]: журнал «Практическая силовая электроника», №5, 2005 г. Преобразователь выполнен в виде трех фазных блоков. Каждый его фазный блок выполнен в виде двух фазных полублоков, каждый из которых в свою очередь содержит 6 синхронно работающих инверторных ячеек по нулевой схеме (с трансформаторным выходом). В целом преобразователь содержит 36 инверторных ячеек. Выходы фазных полублоков в каждой фазе (в виде вторичных обмоток трансформаторов) соединены последовательно. Алгоритмы управления ключевыми элементами инверторных ячеек каждой пары фазных полублоков задаются блоком управления, который формирует две трехфазные системы задающих сигналов с ШИМ, сдвинутые между собой по фазе на тактовой частоте fт на угол π, а задающие сигналы (с выходной частотой f2) в каждой фазе трехфазной системы между собой сдвинуты на угол 2π/3. Таким образом, формирование выходного фазного напряжения в каждом фазном полублоке осуществляется по алгоритму двухполярной ШИМ (ДШИМ) по синусоидальноиу закону синфазно на частоте задающего сигнала, но с фазовым сдвигом сигналов управления между фазными полублоками на угол π на тактовой частотой fт. Поскольку выходы фазных полублоков соединены последовательно, то в результате суммирования двух напряжений с ДШИМ результирующее напряжение в каждом фазном блоке получается со значительно меньшими искажениями и имеет вид сигнала с однополярной ШИМ (ОШИМ) с частотой квантования импульсов в нем 2fт. Наряду с известными достоинствами нулевые инверторные ячейки, на которых построен этот преобразователь, имеют следующий недостаток. Две первичные обмотки каждого из 36 трансформаторов работают попеременно. Из-за прерывания в них токов с тактовой частотой fт на ключевых элементах возникают импульсные перенапряжения, обусловленные индуктивностями рассеяния этих обмоток. Работоспособность инверторных ячеек в известном решении [2] достигается введением специальных схемотехнических средств (называемых снабберными устройствами), которые снижают эти перенапряжения до приемлемого уровня. Фактически их функциональная надежность определяет и надежность инвертора в целом. Использование этих средств негативно сказывается и на КПД инвертора, а неполное использование первичных обмоток трансформаторов по току (из-за попеременной их работы) ухудшает их массогабаритные показатели и преобразователя в целом. Кроме того, транзисторные ключи в инверторных ячейках по нулевой схеме работают при рабочем напряжении несколько большем, чем 2ЕП, где ЕП - напряжение источника питания, что в ряде случаев может ограничивать применение этого решения из-за близости предельно допустимых значений рабочих напряжений транзисторных ключей к этому значению.

Таким образом, недостатками решения-прототипа [2] является его структурная (и технологическая) сложность, пониженные значения КПД и надежности, а также невысокие массогабаритные показатели и завышенное значение напряжения на ключевых элементах, ограничивающее область их применения.

Технический результат, который может быть получен при использовании изобретения, заключается в улучшении массогабаритных показателей, КПД, в улучшении технологичности изготовления, повышении надежности, расширения области применения и достигается тем, что в преобразователе постоянного напряжения в трехфазное квазисинусоидальное с широтно-импульсной модуляцией, содержащий шесть силовых фазных полублоков, которые своими силовыми входами подключены к шинам питания постоянного тока, а выходами - к первичным обмоткам фазных трансформаторных узлов, вторичные фазные обмотки которых соединены пофазно согласно последовательно и подключены ко входным выводам трехфазного фильтра, выходные выводы которых образуют выход преобразователя, а также систему управления фазными полублоками, формирующую две трехфазные системы сигналов с широтно-импульсной модуляцией, сдвинутые на тактовой частоте fт на угол π, для управления ключевыми элементами фазных полублоков, трансформаторные узлы выполнены в виде двух трехфазных трансформаторов, первая половина из трех фазных полублоков, принадлежащих трем разным фазам, выполнена в виде первого трехфазного инвертора напряжения по мостовой схеме на транзисторах с обратными диодами, который своим силовым входом подключен к шинам питания постоянного тока, вторая половина из трех фазных полублоков также выполнена по схеме трехфазного инвертора напряжения, своим силовым входом подключенного аналогично к шинам питания постоянного тока, а выходы первого и второго трехфазных инверторов напряжения подключены к трехфазной первичной обмотке одного из двух трехфазных трансформаторов напряжения.

При этом возможны два способа реализации двух трехфазных трансформаторов. В первом варианте каждый из двух трехфазных трансформаторов выполняют на трех однофазных магнитопроводах, а во втором - на одном трехфазном магнитопроводе, причем в первом варианте первичные трехфазные обмотки каждого из трансформаторов соединены по схеме «треугольник», а во втором - по схеме «треугольник» или «звезда».

Техническая сущность изобретения поясняется чертежами:

на фиг.1 показана принципиальная электрическая схема силовой части преобразователя постоянного напряжения в квазисинусоидальное и функциональная блок-схема его системы управления;

на фиг.2 приведены осциллограммы его работы: вверху - фазное напряжение до фильтра; внизу - фазное напряжение после фильтра и ток активно-индуктивной нагрузки.

Преобразователь постоянного напряжения в трехфазное квазисинусоидальное по фиг.1, содержит два трехфазных инвертора напряжения 1 и 2 (ТИН1 и ТИН2), выполненных по трехфазной мостовой схеме и образующих два одинаковых по мощности преобразующих канала с трансформаторным выходом. Трансформаторный выход каждого трехфазного инвертора 1 и 2 обеспечивается двумя трехфазными трансформаторами, один из которых (для ТИН1) выполнен на трех однофазных магнитопроводах 3, 4, 5 с расположенными на них первичной трехфазной обмоткой 6 (W1-1) и вторичной трехфазной обмоткой 7 (W2-1). Другой трехфазный трансформатор (для ТИН2) выполнен аналогично - на трех однофазных магнитопроводах 8, 9, 10 с расположенными на них первичной трехфазной обмоткой 11 (W1-1) и вторичной трехфазной обмоткой 12 (W2-1). Первичные трехфазные обмотки 6 (W1-1) и 11 (W1-1) обоих трехфазных трансформаторов соединены по схеме «треугольник» и подключены к выходным фазным выводам A1, B1, C1 и A2, B2, C2 инверторов 1 и 2 соответственно. Вторичные трехфазные обмотки двух трехфазных трансформаторов 7 (W2-1) и 12 (W2-1) соединены пофазно согласно последовательно, причем одни одноименные по полярности концы обмоток объединены, образуя нулевую точку 13 (02), а другие образуют промежуточные фазные выводы 14 (A), 15 (B), 16 (C), к которым одними своими концами подключены дроссели индуктивности 17, 18, 19, а между другими их концами включены конденсаторы 20, 21, 22, которые вместе с этими элементами (17, 18, 19) образуют трехфазный Г-образный LC фильтр. Для защиты от перегрузок по току в выходной цепи преобразователя установлен датчик тока 23, включенный между выходными выводами Г-образного LC фильтра и выходными выводами 24, 25, 26 преобразователя. К выходным выводам 24, 25, 26 подключен также датчик трехфазного напряжения (ДН) 27. Выходы датчиков 23 и 27 подключены к соответствующим входам системы управления (СУ) 28. Принцип ее построения достаточно подробно описан в [2], а в упрощенном виде представлен на фиг.1. СУ 28 содержит блоки управления 29, 30, формирующие импульсы управления с ШИМ (с тактовой частотой fT) транзисторными ключами инверторов (ТИН1) 1 и (ТИН2) 2 соответственно, которые сдвинуты между собой на этой тактовой частоте на угол π. Блоки 29, 30 содержат трехфазные модуляторы ширины импульсов (ТМШИ1) 31 и (ТМШИ2) 32, на входы каждого из которых от задатчика сигналов (ТЗС) 33 подается трехфазная система задающих сигналов синусоидальной формы. Блоки 31, 32, 33 синхронизируются таймером 34. Распределение импульсов между транзисторными ключами инверторов 1 и 2 осуществляется логическими узлами (ЛУ1 и ЛУ2) 35 и 36 соответственно, входы которых подключены к выходам блоков 31, 32. Блоки и узлы 29÷36 образуют основную часть системы управления, а блок 37 представляет вспомогательную ее часть. Она содержит два контура отрицательной обратной связи - (КООС1) 38 и (КООС2) 39, входы которых подключены к выходам датчиков напряжения 27 и тока 23 соответственно. Контур 38 обеспечивает стабилизацию выходного напряжения преобразователя, а контур 39 защиту его от перегрузок по току. Узлами 40, 41 задаются уставки для этих контуров (38, 39). Выходные сигналы с узлов 38, 39 через сумматор 42 подаются на управляющий вход блока 33, с которого обеспечивается управление амплитудой трехфазного задающего сигнала. Электропитание всех блоков и узлов СУ 28 обеспечивается блоком питания внутренних нужд (БПВН) 43.

Работает преобразователь следующим образом. Импульсы управления инверторами 1 и 2 формируются трехфазными модуляторами ширины импульсов 31 и 32 соответственно путем логического сравнения трех фазных сигналов ua(t), uв(t), uc(t) синусоидальной формы, поступающих от трехфазного задатчика сигналов 33, с развертывающими сигналами up1(t) и up2(t) треугольной формы тактовой частоты fT, которые сдвинуты между собой по фазе на угол π. Сигнал up1(t) вырабатывается в блоке 31, а сигнал up2(t) - в блоке 32. Трехфазный задатчик сигналов 33 выполняется регулируемым по уровню. Тактовую частоту fT выбирают не менее, чем на порядок большей выходной частоты преобразователя F. На выходах каждого из блоков 31, 32 получают последовательности импульсов с широтно-импульсной модуляцией (ШИМ) по синусоидальному закону, которые на тактовой частоте сдвинуты относительно друг друга на угол π. Затем эти импульсы с помощью логических устройств 35, 36 (после предварительного усиления и гальванической развязки) распределяют по шести транзисторным ключам инверторов 1 и 2 соответственно. Требуемая синхронизация работы блоков 31, 32, 33 обеспечивается таймером 34. Функции стабилизации выходного напряжения и защиты от перегрузок по току осуществляются вспомогательной частью системы управления 37.

Похожие патенты RU2563247C1

название год авторы номер документа
ТРЕХФАЗНЫЙ ИНВЕРТОР НАПРЯЖЕНИЯ С ТРАНСФОРМАТОРНЫМ ВЫХОДОМ 2012
  • Берг Виталий Рейнгольдович
  • Бродников Сергей Николаевич
  • Кудряшев Анатолий Анатольевич
  • Михеев Владимир Викторович
  • Мыцык Геннадий Сергеевич
RU2531378C2
ПРЕОБРАЗОВАТЕЛЬ ПОСТОЯННОГО НАПРЯЖЕНИЯ В ТРЕХФАЗНОЕ КВАЗИСИНУСОИДАЛЬНОЕ 2012
  • Берг Виталий Рейнгольдович
  • Бродников Сергей Николаевич
  • Кудряшев Анатолий Анатольевич
  • Михеев Владимир Викторович
  • Мыцык Геннадий Сергеевич
RU2509404C1
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ ТРЕХФАЗНОГО СИНУСОИДАЛЬНОГО НАПРЯЖЕНИЯ СО ЗВЕНОМ ПОВЫШЕННОЙ ЧАСТОТЫ 2020
  • Климаш Владимир Степанович
  • Константинов Андрей Михайлович
RU2740490C1
СТАБИЛИЗАТОР ТРЁХФАЗНОГО СИНУСОИДАЛЬНОГО НАПРЯЖЕНИЯ СО ЗВЕНОМ ПОВЫШЕННОЙ ЧАСТОТЫ 2019
  • Климаш Владимир Степанович
  • Константинов Андрей Михайлович
RU2709186C1
УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ НАПРЯЖЕНИЯ ТРАНСФОРМАТОРНОЙ ПОДСТАНЦИИ 1999
  • Климаш В.С.
  • Симоненко И.Г.
RU2159004C1
Однофазный инвертор напряжения с многофазной широтно-импульсной модуляцией 2023
  • Мыцык Геннадий Сергеевич
  • Мье Мин Тант
RU2804997C1
Преобразователь постоянного напряжения в квазисинусоидальное трёхфазное напряжение повышенной мощности 2021
  • Мыцык Геннадий Сергеевич
RU2762829C1
СПОСОБ УПРАВЛЕНИЯ ДВУХЗВЕННЫМ ПРЕОБРАЗОВАТЕЛЕМ ЧАСТОТЫ 2010
  • Ганиев Ришат Наильевич
  • Горбачевский Николай Иванович
  • Дмитриев Владимир Николаевич
  • Сидоров Сергей Николаевич
RU2444834C1
УСТРОЙСТВО ДЛЯ КОМПЕНСАЦИИ ОТКЛОНЕНИЙ НАПРЯЖЕНИЯ И РЕАКТИВНОЙ МОЩНОСТИ ТРАНСФОРМАТОРНОЙ ПОДСТАНЦИИ 2006
  • Климаш Владимир Степанович
  • Власьевский Станислав Васильевич
  • Константинов Андрей Михайлович
RU2316875C1
Устройство для управления преобразователем постоянного напряжения в трехфазное квазисинусоидальное 1988
  • Чесноков Александр Владимирович
  • Мыцык Геннадий Сергеевич
SU1617587A1

Иллюстрации к изобретению RU 2 563 247 C1

Реферат патента 2015 года ПРЕОБРАЗОВАТЕЛЬ ПОСТОЯННОГО НАПРЯЖЕНИЯ В ТРЕХФАЗНОЕ КВАЗИСИНУСОИДАЛЬНОЕ С ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИЕЙ

Изобретение относится к области силовой преобразовательной техники. Технический результат заключается в улучшении массогабаритных показателей, КПД, в улучшении технологичности изготовления, повышении надежности, расширении функциональных возможностей. Для этого заявленное устройство содержит шесть силовых фазных полублоков, которые своими силовыми входами подключены к шинам питания постоянного тока, а выходами - к первичным обмоткам фазных трансформаторных узлов, вторичные фазные обмотки которых соединены пофазно согласно последовательно и подключены ко входным выводам трехфазного фильтра, а также систему управления фазными полублоками, формирующую две трехфазные системы сигналов с широтно-импульсной модуляцией, сдвинутые на тактовой частоте fТ на угол π, для управления ключевыми элементами фазных полублоков, трансформаторные узлы выполнены в виде двух трехфазных трансформаторов, первая половина из трех фазных полублоков выполнена в виде первого трехфазного инвертора напряжения по мостовой схеме на транзисторах с обратными диодами, который своим силовым входом подключен к шинам питания постоянного тока, вторая половина из трех фазных полублоков также выполнена по схеме трехфазного инвертора напряжения, своим силовым входом подключенного аналогично к шинам питания постоянного тока, а выходы первого и второго трехфазных инверторов напряжения подключены к трехфазной первичной обмотке одного из двух трехфазных трансформаторов напряжения. 2 з. п. ф-лы, 2 ил.

Формула изобретения RU 2 563 247 C1

1. Преобразователь постоянного напряжения в трехфазное квазисинусоидальное с широтно-импульсной модуляцией, содержащий шесть силовых фазных транзисторных полублоков, которые своими силовыми входами подключены к шинам питания постоянного тока, а выходами - к первичным обмоткам фазных трансформаторных узлов, вторичные фазные обмотки которых соединены пофазно согласно последовательно и подключены ко входным выводам трехфазного фильтра, выходные выводы которых образуют выход преобразователя, а также блок управления фазными транзисторными полублоками, формирующий две трехфазные системы сигналов с широтно-импульсной модуляцией, сдвинутые на тактовой частоте fT на угол π, для управления ключевыми элементами фазных транзисторных полублоков, отличающийся тем, что трансформаторные узлы выполнены в виде двух трехфазных трансформаторов, первая половина из трех фазных полублоков, принадлежащих трем разным фазам, выполнена в виде первого трехфазного инвертора напряжения по мостовой схеме на транзисторах с обратными диодами, который своим силовым входом подключен к шинам питания постоянного тока, вторая половина из трех фазных полублоков также выполнена по схеме трехфазного инвертора напряжения, своим силовым входом подключенного аналогично к шинам питания постоянного тока, а выходы первого и второго трехфазных инверторов напряжения подключены к трехфазной первичной обмотке одного из двух трехфазных трансформаторов напряжения.

2. Преобразователь постоянного напряжения в трехфазное квазисинусоидальное с широтно-импульсной модуляцией по п.1, отличающийся тем, что каждый из двух трехфазных трансформаторов выполнен на трех однофазных магнитопроводах, а первичные трехфазные обмотки каждого из них соединены по схеме «треугольник».

3. Преобразователь постоянного напряжения в трехфазное квазисинусоидальное с широтно-импульсной модуляцией по п.1, отличающийся тем, что каждый из двух трехфазных трансформаторов выполнен на одном трехфазном магнитопроводе, а первичные трехфазные обмотки каждого из них соединены по схеме «треугольник» или «звезда».

Документы, цитированные в отчете о поиске Патент 2015 года RU2563247C1

"Практическая силовая электроника", Журнал, " 5, 2005, с
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Регулируемый преобразователь напряжения 1987
  • Джулай Борис Авраамович
  • Зибров Вадим Дмитриевич
  • Хмыз Борис Иванович
SU1436231A1
Устройство для управления двухканальным трехфазным преобразователем 1991
  • Селиверстов Анатолий Владимирович
  • Михеев Владимир Викторович
  • Мыцык Геннадий Сергеевич
  • Тиняков Юрий Викторович
SU1826116A1
Инвертор с широтно-импульсным регу-лиРОВАНиЕМ ВыХОдНОгО НАпРяжЕНия 1978
  • Бас Алексей Андреевич
SU817874A1
МОБИЛЬНОЕ БЕСПРОВОДНОЕ 3D УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ УЛЬТРАЗВУКОВЫХ ИЗОБРАЖЕНИЙ И СИСТЕМА УЛЬТРАЗВУКОВОЙ ВИЗУАЛИЗАЦИИ 2013
  • Поланд Макки Данн
RU2647146C2
US 4435632 A, 06.03.1984

RU 2 563 247 C1

Авторы

Берг Виталий Рейнгольдович

Бродников Сергей Николаевич

Кудряшев Анатолий Анатольевич

Михеев Владимир Викторович

Мыцык Геннадий Сергеевич

Даты

2015-09-20Публикация

2013-11-25Подача