Изобретение относится к геофизике и применяется для измерения 3-х составляющих вектора вибрации в скважине, обусловленной движением газа. Есть газовые месторождения в скважинах, в которых содержится большое количество ядовитого газа - сероводорода, смешанного с основным добываемым продуктом. Броня каротажного кабеля имеет неровную, шершавую поверхность, поэтому невозможна хорошая герметизация выходного отверстия превентора, установленного на устье скважины. Это может привести к выходу сероводорода из скважины и отравлению окружающей среды и персонала, проводящего каротаж. Поэтому спускоподъемная операция на таких скважинах производится на специальной проволоке, имеющей малый диаметр и ровную поверхность. По проволоке невозможно подать питание на скважинный прибор и снять полученную информацию. В таких приборах, работающих на проволоке, используется и автономное питание, и регистратор (блок памяти), расположенные в скважинном приборе.
Проведение измерений с автономными приборами занимает относительно большое время, обычно при высокой температуре без возможности контролировать получаемую информацию в процессе каротажа, поэтому необходимо применять специальные меры для получения достоверной информации.
Известно устройство [1], содержащее расположенный в скважинном приборе датчик вибрации (пьезодатчик), усилитель и наземный пульт. Недостатком этого устройства является то, что оно не может измерять три компоненты вектора вибрации. Кроме того не может работать в автономном режиме на проволоке.
Известно устройство [2], содержащее в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, коммутаторы, частотно-импульсный модулятор и наземный пульт. К недостаткам прибора можно отнести то, что в нем осуществляется двойное преобразование измеряемого сигнала. Сначала в частотно-модулированный сигнал, а затем на поверхности в двоичный код. Это целесообразно при использовании кабельной связи, но для автономных приборов это неприемлемо, так как существенно усложняет прибор.
Наиболее близким техническим решением является аппаратура [3], содержащая в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, коммутаторы, усилитель сигналов, блок фильтров, аналого-цифровой преобразователь, блок управления.
К недостаткам прибора можно отнести то, что в процессе каротажа не проверяется коэффициент передачи усилителя, фильтров и АЦП, что недопустимо для скважииного прибора. Работоспособность прибора проверяется при движении скважинного прибора трущегося о стенку скважины, что создает вибрацию. Для правильной работы датчиков геоакустических сигналов усилитель должен иметь очень большое входное сопротивление. При больших температурах первый коммутатор, выполненный на микросхемах, работающий на высокое сопротивление усилителя, может вносить существенную ошибку из-за изменения его сопротивления в закрытом состоянии.
Устройство для проведения геоакустического каротажа в газовых скважинах, содержащее в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, усилитель, полосовые фильтры, аналого-цифровой преобразователь, блок управления, отличающееся тем, что в него дополнительно введены три повторителя напряжения с высоким входным и малым выходным сопротивлением, входы которых соединены с датчиками геоакустических сигналов, а выходы подсоединены к первому, второму, третьему входам первого коммутатора, а также трехчастотный генератор калибровки, выход которого соединен с четвертым входом первого коммутатора, а управляющий вход генератора соединен с выходом блока управления.
На чертеже изображена функциональная схема устройства.
Устройство содержит:
1, 2, 3 - датчик геоакустических сигналов,
4 - трехчастотный генератор калибровки,
5, 6, 7 - повторители напряжения,
8 - первый коммутатор,
9 - усилитель,
10 - блок полосовых фильтров и выпрямителей,
11 - второй коммутатор,
12 - аналого-цифровой преобразователь,
13 - блок памяти,
14 - блок управления,
15 - таймер включения,
16 - блок питания.
Работает устройство следующим образом. Устройство работает с временным разделением каналов. После спуска скважинного прибора на заданную глубину через определенный интервал времени таймер 15 инициализирует работы блока управления 14. Первый коммутатор 8 поочередно подключает датчики геоакустических сигналов 1, 2, 3 через повторители напряжения 5, 6, 7, а также трехчастотный генератор калибровки 4 ко входу усилителя 9. При этом входное сопротивление усилителя 9 составляет единицы килоом, что позволяет исключить погрешности, вносимые первым коммутатором 9, выполненным на микросхемах при высоких температурах.
Выходное напряжение усилителя 9 поступает на вход блока полосовых фильтров и выпрямителей 10 и далее на входы второго коммутатора 11, выход которого подключен ко входу аналого-цифрового преобразователя 12. Цикл работы второго коммутатора 11 состоит из 12 тактов. Блок 10 содержит 3 полосовых фильтра и выпрямитель на выходе каждого фильтра. В первые три такта работы коммутатора 11 ко входу усилителя подключен первый датчик геоакустических сигналов 1. На вход аналого-цифрового преобразователя 12 поступают выпрямленные сигналы в трех полосах частот, которые преобразуются блоком 11 и регистрируются блоком памяти 13. В такты 4-9 подключаются поочередно 2-й и 3-й датчики геоакустических сигналов, напряжение с которых также регистрируется в трех полосах частот. В 10-12 такте блок управления 14 переключает частоту генератора калибровки 4 в соответствии с полосами фильтров 10, и калибровочные сигналы также оцифровываются блоком 12 и регистрируются блоком 13.
После регистрации двенадцати параметров скважинный прибор перемещается на другую точку и цикл измерений повторяется.
В заключение можно сказать то, что применение после датчиков геоакустических сигналов повторителей напряжения с высоким входным сопротивлением и малым выходным позволяет существенно снизить ошибку, при высоких температурах вносимую коммутатором, выполненным на микросхемах, за счет возможности применения усилителя следующего за ним, с достаточно низким входным сопротивлением.
Применение 3-частотного генератора калибровки позволяет тестировать измерительную и цифровую часть устройства во всем измеренном диапазоне частот, что позволяет повысить точность измерений.
Источники информации
1. Малкин З.М., Лашневич Л.С. Скважинный спектральный шумомер. Труды Московского института нефтехимической и газовой промышленности. 1984 г., №188.
2. Астраханцев Ю.Г., Троянов А.К. Устройство для проведения геоакустического каротажа. Патент РФ №2445653 G01V 11/00.
3. Астраханцев Ю.Г., Троянов А.К. Устройство для измерения геоакустических шумов в скважине. Патент РФ №2123711 G01V 1/40.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ В СКВАЖИНЕ ГЕОАКУСТИЧЕСКИХ СИГНАЛОВ | 2017 |
|
RU2668654C1 |
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ ГЕОАКУСТИЧЕСКОГО КАРОТАЖА | 2010 |
|
RU2445653C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ГЕОАКУСТИЧЕСКИХ ШУМОВ В СКВАЖИНЕ | 1997 |
|
RU2123711C1 |
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ ДИНАМИЧЕСКОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД В СКВАЖИНЕ | 2013 |
|
RU2533334C1 |
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ В СКВАЖИНАХ ДИНАМИЧЕСКОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД | 2017 |
|
RU2658592C1 |
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ КАРОТАЖА В РУДНЫХ СКВАЖИНАХ | 2010 |
|
RU2456643C2 |
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА СКВАЖИН | 2004 |
|
RU2292064C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ГЕОАКУСТИЧЕСКИХ ШУМОВ В СКВАЖИНЕ | 2013 |
|
RU2533759C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА СКВАЖИН В ПРОЦЕССЕ БУРЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2193655C2 |
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА СКВАЖИН | 2003 |
|
RU2230344C1 |
Устройство относится к геофизике, в частности геофизическим исследованиям газовых скважин. Устройство содержит в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, усилитель, полосовые фильтры, аналого-цифровой преобразователь, блок управления. Кроме того, в устройство дополнительно введены три повторителя напряжения с высоким входным и малым выходным сопротивлением, входы которых соединены с датчиками геоакустических сигналов, а выходы подсоединены к первому, второму, третьему входам первого коммутатора, а также трехчастотный генератор калибровки, выход которого соединен с четвертым входом первого коммутатора. При этом управляющий вход генератора соединен с выходом блока управления. Технический результат заключается в повышении точности измерений. 1 ил.
Устройство для проведения геоакустического каротажа в газовых скважинах, содержащее в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, усилитель, полосовые фильтры, аналого-цифровой преобразователь, блок управления, отличающееся тем, что в него дополнительно введены три повторителя напряжения с высоким входным и малым выходным сопротивлением, входы которых соединены с датчиками геоакустических сигналов, а выходы подсоединены к первому, второму, третьему входам первого коммутатора, а также трехчастотный генератор калибровки, выход которого соединен с четвертым входом первого коммутатора, а управляющий вход генератора соединен с выходом блока управления.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ГЕОАКУСТИЧЕСКИХ ШУМОВ В СКВАЖИНЕ | 1997 |
|
RU2123711C1 |
Учебный интерферометр | 1960 |
|
SU136594A1 |
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ ГЕОАКУСТИЧЕСКОГО КАРОТАЖА | 2010 |
|
RU2445653C2 |
Металлический шарнирный верхняк | 1955 |
|
SU112947A1 |
Авторы
Даты
2015-10-20—Публикация
2014-02-19—Подача