СПОСОБ ПРЕДПОСЕВНОЙ СТИМУЛЯЦИИ СЕМЯН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2015 года по МПК A01H1/06 A01C1/00 

Описание патента на изобретение RU2565822C1

Изобретение относится к сельскому хозяйству, в частности к методам предпосевной стимуляции семян низкоинтенсивным лазерным излучением (НИЛИ) в инфракрасной (ИК) и красной (Кр) областях оптического диапазона, а также в биологических и селекционных исследованиях, направленных на определение влияния электромагнитных полей оптического диапазона на биологические объекты.

Известен способ предпосевной обработки семян, предусматривающий стимуляцию прорастания семян бобовых трав, включающий их однократную обработку перед посевом магнито-инфракрасно-лазерным аппаратом в определенном режиме, отличающийся тем, что семена подвергаются полифакторному одновременному воздействию на биологические структуры объекта импульсного инфракрасного лазерного излучения, пульсирующего широкополосного инфракрасного излучения, красного излучения и постоянного магнитного поля с частотой повторения импульсов 1000 Гц и экспозицией 18-20 мин на расстоянии 1-1,5 см от объекта (см. RU №2377752, A01C 1/00, 2010).

Основным недостатком приведенного способа является низкая когерентность и монохроматичность пульсирующего красного и инфракрасного излучения и длительное время обработки семян, следствием чего является небольшой эффект и низкая эффективность стимуляции.

Наиболее близким техническим решением к предлагаемому изобретению является принятый за прототип способ светоимпульсной предпосевной обработки семян, заключающийся в том, что семена подвергают воздействию неэлектромагнитного компонента излучения, исходящего от импульсного светового излучателя, пропущенного через слой вещества, изготовленного из пенициллина, толщиной от 0,5 до 3 мм, при этом на светодиоды в излучателе подается сигнал, имеющий следующие характеристики: частота следования импульсов 3000 имп/с, частота модуляции основного сигнала 12-15 Гц, амплитуда напряжения в импульсе 50-100 В, длительность импульса 200-300 нс (см. RU №234065, A01C 1/00, 2008).

Указанный способ имеет ряд существенных недостатков: не определено времени экспозиции обработки семян, плотность мощности и доза облучения световым потоком, не определен механизм воздействия неэлектромагнитной компоненты излучения светодиодов на семена.

Задачей предлагаемого изобретения является повышение эффективности стимуляции, выражающееся в увеличении энергии прорастания семян, ускорении дальнейшего роста растений и обеспечении увеличения урожайности зерновых и овощных структур.

Поставленная задача достигается тем, что на семена последовательно воздействуют низкоинтенсивным сканирующим лазерным излучением инфракрасного, а затем красного диапазона излучения с различной частотой модуляции и временем экспозиции (для разных видов семян) и дополнительной модуляцией ВИСЛИ пространственным модулятором (ПМ) в устройстве с круговой разверткой.

Как известно стимуляция биосистемы может осуществляться посредством электромагнитных полей оптического диапазона. Согласно гипотезе [см. Малов А.Н., Малов С.Н., Черный В.В. / Физические основы лазерной терапии. - Иркутск: ИФ ИЛФ СО РАН, 1997. Препринт №2. - 46 с] эффект лазерной биостимуляции проявляется при условии «согласования пространственного распределения интенсивности поля лазерного излучения (спекл-структуры) со структурой биологического объекта, характеризующейся конформационными состояниями макромолекул». Спекл-поле, формируя на облучаемой поверхности микронеоднородную структуру с определенными характеристиками, является наиболее биологически активным, что позволяет достичь значительного эффекта при стимулировании биосистемы. Поэтому формируя электромагнитные поля с близкими для облучаемой биосистемы пространственно-временными характеристиками (спекл-структурами), можно получить более существенный эффект биостимуляции. Для формирования такого электромагнитного поля применяется пространственный модулятор.

Воздействие НИСЛИ инфракрасного диапазона осуществлялось полупроводниковым лазером типа (ADL-85502-TL) с постоянной плотностью мощности W=44 мВт/см2, при вариации дозы облучения D от 160 мДж/см2 до 1,32Дж/см2 с соблюдением следующих параметров:

- длина волны λ=850 нм, длина когерентности Lког=361 мкм, длительность импульсов τи=62,5 мкс, частота импульсов f=1000 Гц, мощность излучения лазера Ризл=50 мВт, экспозиция излучения 15, 30, 60, 120 и 240 с.

Воздействие НИСЛИ красного диапазона осуществлялось полупроводниковым лазером типа (HLDH-660-A-50-01) с постоянной плотностью мощности W=44 мВт/см2, при вариации дозы облучения D от 160 мДж/см2 до 1,32Дж/см2 с соблюдением следующих параметров:

- длина волны λ=658 нм, длина когерентности Lког=217 мкм, длительность импульсов τи=62,5 мкс, частота импульсов f=1000 Гц, мощность излучения лазера Ризл=50 мВт, экспозиция излучения 15, 30, 60, 120 и 240 с.

Пространственный модулятор это многослойная структура со случайно неоднородной средой, заключенная между двумя прозрачными пластинами диаметром (120 мм×2 мм). В качестве компоненты пространственного модулятора использовалась биологически активная добавка (БАД) чаванпраш при соблюдении следующих параметров:

коэффициент пропускания - 41%;

оптическая плотность - 0.39;

Преимущество способа заключается в том, что применение круговой развертки позволяет проводить стимуляцию семян на большой площади, а сочетание двух длин волн лазерного излучения модулированного пространственным модулятором при воздействии на семена вызывает более значительный отклик, чем при воздействии источником с одной длиной волны. Такой способ стимуляции приводит к существенному ускорению протекания ростовых процессов (скорости роста клеток, органов и тканей), увеличению процента всхожести семян, улучшению питания растений за счет увеличения степени поглощения ионов K+, Ca++, Mg++, повышению активности энергетических процессов дыхания и фотосинтеза.

Устройство для стимуляции семян состоит из трех блоков. В блоке формирования управляющей программы (БФУП) с панели управления (ПУ) задается программа, управляющая стимулятором. На вращающейся каретке (ВК) расположен блок формирования потока излучения (БФПИ), который согласно заданной программе управляет режимом работы лазеров. В контейнерном блоке (КБ) размещен пространственный модулятор (ПМ) и контейнер для размещения семян.

Для пояснения изобретения предложены чертежи.

На фиг. 1 представлена структурная схема установки и схема сканирования для стимуляции семян, состоящие из трех блоков, где:

БФУП - блок формирования управляющей программы, состоящий из:

БП - блок питания;

ПУ - панель управления;

СФКСУМ - схема формирования и кодирования сигналов управления и формирование частоты модуляции;

СУДВК - схема управления двигателем вращения каретки;

ДВК - двигатель вращения каретки;

СФСВТ - схема формирования сигналов вращающего трансформатора;

ВТС - вращающийся трансформатор (статор);

СД - светодиод;

ФД - фотодиод;

ШПВК - шестерня привода вращения каретки.

БФПИ - блок формирования потока излучения, состоящий из:

ВТР - вращающийся трансформатор (ротор);

ВБП - вторичный блок питания;

ПСУМ - приемник сигналов управления и модуляции;

СДСУ - схема декодера сигналов управления;

СУМЛ - схема управления модуляторами лазеров;

МИКЛ - модулятор инфракрасного лазера;

МКЛ - модулятор красного лазера;

Л1 - лазер красный;

Л2 - лазер инфракрасный;

СУДВП - схема управления двигателем вращающейся четырехгранной призмы;

ДВП - двигатель вращения призмы;

ВП - вращающаяся четырехгранная призма;

З1 - отражающее зеркало;

З2 - отражающее зеркало;

КУЛ - корректирующая угол линза.

КБ - контейнерный блок, состоящий из:

ПМ - пространственный модулятор;

КБО - контейнер для размещения семян.

На фиг. 2 представлен общий вид установки для стимуляции семян.

На фиг. 3 изображен разрез установки.

Способ стимуляции осуществляется следующим образом.

Формирование программы работы стимулятора осуществляется с панели управления (ПУ) блока формирования управляющей программы (БФУП), где задается очередность работы лазеров, время излучения, количество циклов излучения, частота модуляции лазеров. В схеме формирования и кодирования сигналов управления и формирования частоты модуляции (СФКСУМ) формируются и кодируются сигналы управления стимулятором, и задается частота модуляции лазеров. Через оптическую систему светодиод-фотодиод (СД-ФД) кодированные сигналы, а затем модулирующий сигнал поступают в приемник сигналов управления и модуляции (ПСУМ) блока формирования потока излучения (БФПИ) вращающейся каретки (ВК). С приемника (ПСУМ) кодированный сигнал поступает на схему декодера сигналов управления (СДСУ) и далее на схему управления модуляторами лазеров (СУМЛ), а модулирующий сигнал - на модуляторы красного и инфракрасного лазеров (МКЛ и МИКЛ). Схема управления модуляторами лазеров (СУМЛ) включает и выключает лазеры согласно сгенерированной управляющей программе.

Включение двигателя вращения каретки (ДВК) осуществляется автоматически сгенерированной программой или с панели управления (ПУ) через схему управления двигателем вращения каретки (СУДВК), скорость вращения составляет один оборот в секунду. Момент вращения двигателя посредством шестерни привода (ШПВК) передается на вал вращения каретки. Напряжение на все схемы блока формирования управляющей программы (БФУП) подается от встроенного блока питания (БП). Напряжение на вращающуюся каретку (ВК) подается от вращающегося трансформатора (ВТС), статор которого неподвижно закреплен. Импульсное высокочастотное напряжение на первичную обмотку вращающегося трансформатора подается со схемы формирования сигналов вращающего трансформатора (СФСВТ). В блоке формирования потока излучения (БФПИ) вращающейся каретки (ВК) с вторичной обмотки ротора вращающегося трансформатора (ВТР) снимается переменное напряжение и подается на вторичный блок питания (ВБП), который запитывает все схемы блока (БФУП). Двигатель вращения призмы (ДВП) включается при подаче общего напряжения. Управление двигателем (ДВП) осуществляется через схему управления двигателем вращающейся четырехгранной призмы (СУДВП), скорость вращения стабилизирована кварцевым генератором и составляет 1000 об/мин.

Устройство для стимуляции семян работает следующим образом. Луч лазера, отраженный от зеркал (31 или 32), падает на вращающуюся призму, разворачиваясь в строку, и, отразившись от нее, проецируется на пространственный модулятор (который представляет собой анизотропную квазижидкокристаллическую дифракционную решетку).

Вращающаяся каретка производит круговое сканирование по монослою пространственного модулятора лазерным лучом (продолжительность одного цикла сканирования 0,5 секунды). В результате в каждой точке падения лазерного луча формируется интерференционное лазерное поле (со своей спекл-структурой), которое воздействуя на биообъект, приводит к стимуляции биологических процессов.

Пример

В качестве биологического объекта использовались семена огурца сорта «Кустовой» раннего срока созревания. Сухие семена формировались в пять отдельных групп (по 50 семян в каждом из опытов), каждая сформированная группа состояла из контрольной и опытной. Затем семена замачивали в отстоявшейся из-под крана воде при комнатной температуре и оставляли на сутки. Проклюнувшиеся семена 50 штук однократно подвергалась воздействию НИСЛИ с ПМ в установке (фиг. 1) при освещении 10-15 лк. Выбор частоты повторения импульсов лазерного излучения в 1000 Гц и временная экспозиция выявлены экспериментальным путем предыдущими опытами. Такой режим облучения стимулирует протекание ростовых процессов и способствует реализации генетического потенциала. Затем семена высевали в рассадные пластиковые кассеты, заполненные торфяным питательным грунтом фирмы «Агробалт». Кассеты размером 30×50 см состояли из 35 ячеек. В каждую ячейку высевали по 1 семени. Посев был проведен 25 мая, массовые всходы появились через 4-5 дней. К моменту высадки рассада была в фазе 1-2 настоящих листа.

При оценке продуктивности растений в контрольном варианте товарная урожайность составила 25,6 плодов с одного м2. По всем остальным вариантам с использованием НИСЛИ с ПМ эти показатели значительно выше. Самые высокие показатели отмечены во II опытной и составили 32,8 плодов с одного м2 (см. фиг. 4).

При сравнении данных урожайности было установлено существенное превышение по урожайности во всех вариантах опыта по отношению к контролю. Во всех вариантах опыта, где было использовано воздействие НИСЛИ с ПМ, были получены существенные прибавки урожая. Самая высокая прибавка урожайности получена во II варианте - 4,2 кг/м2, что на 50,0% выше, чем в контрольном варианте.

Проведенные опыты показали увеличение урожайности по всем вариантам опыта, оно происходило в основном за счет увеличения числа плодов с единицы площади. Увеличение массы плодов также отмечено по сравнению с контролем, однако оно не так велико. Лишь при воздействии НИСЛИ с ПМ при экспозиции 30 сек плоды были на 16 г больше, чем в контроле.

Таким образом, оптимальный режим облучения создается частотой повторения импульсов 1000 Гц и временной экспозицией 30 сек.

Данный способ опробован в 2011 г. на овощном опытном участке крестьянского фермерского хозяйства «Родник» деревни Щелино Шимского района Новгородской области.

Похожие патенты RU2565822C1

название год авторы номер документа
СПОСОБ БИОСТИМУЛЯЦИИ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПТИЦЫ ЭЛЕКТРОМАГНИТНЫМ ОПТИЧЕСКИМ ИЗЛУЧЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Вяйзенен Геннадий Николаевич
  • Даниловских Михаил Геннадьевич
  • Винник Людмила Ивановна
RU2439876C2
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ ЗЕРНОБОБОВЫХ КУЛЬТУР 2010
  • Мазуров Владимир Николаевич
  • Кожухарь Анатолий Юрьевич
  • Кожухарь Андрей Анатольевич
RU2433584C1
Светодиодный модулируемый фитоосветитель растений 2016
  • Даниловских Михаил Геннадьевич
  • Винник Людмила Ивановна
  • Добровольский Иван Александрович
RU2637744C1
МАТРИЧНЫЙ ЛАЗЕРНЫЙ ИЗЛУЧАТЕЛЬ ДЛЯ ЛЕЧЕНИЯ АКНЕ 2017
  • Райгородский Юрий Михайлович
  • Утц Сергей Рудольфович
  • Черненков Юрий Валентинович
  • Ручкин Виктор Викторович
  • Татаренко Дмитрий Александрович
RU2638439C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР 2013
  • Федотов Виктор Анатольевич
  • Алтухов Игорь Вячеславович
  • Очиров Вадим Дансарунович
RU2537919C2
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 2016
  • Усанов Дмитрий Александрович
  • Усанов Андрей Дмитриевич
  • Постельга Александр Эдуардович
  • Рытик Андрей Петрович
  • Пархоменко Алена Сергеевна
RU2652185C2
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 1995
  • Василенко Владимир Федорович
RU2090031C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН БОБОВЫХ ТРАВ 2008
  • Хетагурова Лариса Георгиевна
  • Бекузарова Сарра Абрамовна
  • Беляева Виктория Александровна
RU2377752C2
Способ предпосевной обработки семян зерновых культур лазерным облучением 2023
  • Щербинина Ксения Эдуардовна
  • Лисина Татьяна Николаевна
RU2817568C1
СПОСОБ ЛЕЧЕНИЯ АМБЛИОПИИ У ДЕТЕЙ 2013
  • Фабрикантов Олег Львович
  • Райгородский Юрий Михайлович
  • Уварова Галина Ивановна
  • Матросова Юлия Владимировна
RU2555387C2

Иллюстрации к изобретению RU 2 565 822 C1

Реферат патента 2015 года СПОСОБ ПРЕДПОСЕВНОЙ СТИМУЛЯЦИИ СЕМЯН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Группа изобретений относится к сельскому хозяйству, в частности к методам предпосевной стимуляции семян низкоинтенсивным лазерным излучением в инфракрасной и красной областях оптического диапазона. Способ характеризуется тем, что на проклюнувшиеся семена после суточного замачивания однократно воздействуют при освещении 10-15 лк низкоинтенсивным сканирующим лазерным излучением сначала инфракрасного диапазона излучения лазером типа ADL-85502-TL. После чего проклюнувшие семена подвергают воздействию излучения лазером типа HLDH-660-A-50-01 в красном диапазоне излучения, дополнительно промодулированным пространственным модулятором. Устройство включает контейнерный блок, соединенные в технологической последовательности блок формирования управляющей программы, блок формирования потока излучения, установленный на вращающейся каретке и имеющий два лазера, пространственный модулятор. Последний размещен в контейнерном блоке и представляет собой многослойную анизотропную квазижидкокристаллическую дифракционную решетку, заключенную между двумя прозрачными пластинами, для образования в каждой точке падения промодулированного лазерного луча интерференционного лазерного поля со своей спекл-структурой. Группа изобретений обеспечивает повышение эффективности и качества стимуляции за счет обеспечения условий согласования пространственного распределения интенсивности поля лазерного излучения со структурой обрабатываемых семян. 2 н.п. ф-лы, 1 пр., 1 табл., 4 ил.

Формула изобретения RU 2 565 822 C1

1. Способ предпосевной стимуляции семян, характеризующийся тем, что на проклюнувшиеся семена после суточного замачивания однократно воздействуют при освещении 10-15 лк низкоинтенсивным сканирующим лазерным излучением сначала инфракрасного диапазона излучения лазером типа ADL-85502-TL с постоянной плотностью мощности W=44 мВт/см2 при вариации дозы облучения D от 160 мДж/см2 до 1,32 Дж/см2, длиной волны λ=850 нм и частотой повторения лазерных импульсов 1000 Гц при экспозиции излучения 15, 30, 60, 120 и 240 с, а затем красного диапазона излучения лазером типа HLDH-660-A-50-01 с плотностью мощности W=44 мВт/см2 при вариации дозы облучения D от 160 мДж/см2 до 1,32 Дж/см2, длиной волны λ=658 нм и частотой повторения лазерных импульсов 1000 Гц при экспозиции излучения 15, 30, 60, 120 и 240 с), дополнительно промодулированным пространственным модулятором.

2. Устройство для предпосевной стимуляции семян, характеризующееся тем, что включает в себя блок формирования управляющей программы, синхронизирующий работу всего устройства; блок формирования потока излучения, установленный на вращающейся каретке для формирования сканирующего по кругу лазерного излучения, содержащий два лазера; причем лазерное излучение каждого из двух лазеров посредством отражающих зеркал, вращающейся четырехгранной призмы разворачивается в строку и далее проецируется на пространственный модулятор, который представляет собой многослойную анизотропную квазижидкокристаллическую дифракционную решетку, заключенную между двумя прозрачными пластинами, в результате в каждой точке падения промодулированного лазерного луча формируется интерференционное лазерное поле со своей спекл-структурой, которое, воздействуя на семена, приводит к стимуляции биологических процессов; а также контейнерный блок для размещения пространственного модулятора и стимулируемых семян.

Документы, цитированные в отчете о поиске Патент 2015 года RU2565822C1

СПОСОБ СВЕТОИМПУЛЬСНОЙ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 2007
  • Бобров Андрей Владимирович
  • Демина Лилия Борисовна
  • Лунин Максим Викторович
RU2340165C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН БОБОВЫХ ТРАВ 2008
  • Хетагурова Лариса Георгиевна
  • Бекузарова Сарра Абрамовна
  • Беляева Виктория Александровна
RU2377752C2
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 1995
  • Василенко Владимир Федорович
RU2090031C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 1997
  • Спиров Григорий Маврикеевич
  • Селемир Виктор Дмитриевич
  • Верхова Александра Филипповна
RU2109429C1
GB 1353316 A , 15.05.1974
СПОСОБ СВЕТОИМПУЛЬСНОЙ ОБРАБОТКИ РАСТЕНИЙ 2004
  • Спиров Г.М.
  • Селемир В.Д.
  • Зайцев А.С.
  • Тюренкова Н.В.
  • Верхова А.Ф.
RU2262834C1

RU 2 565 822 C1

Авторы

Даниловских Михаил Геннадьевич

Винник Людмила Ивановна

Горелкин Александр Дмитриевич

Даты

2015-10-20Публикация

2014-06-10Подача