Изобретение относится к области авиадвигателестроения, а именно к конструкциям корпусов осевых компрессоров высокого давления современных газотурбинных двигателей.
Известна конструкция спирального корпуса радиальной вихревой турбомашины, в которой имеется вращающееся рабочее центробежное колесо, предназначенное для нагнетания воздуха (Патент RU №2430274, F04D 29/22, F04D 29/28, опубл. 27.09.2011 г.).
Однако известная конструкция не предназначена для использования в осевых компрессорах, обеспечивающих подвод воздуха на самолетные и внутридвигательные нужды.
Наиболее близким к заявляемому является спиральный корпус осевого компрессора высокого давления, выполненный в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала (Патент RU №2118463, F01D 9/02, F04D 29/42, опубл. 27.08.1998 г.).
Известный корпус содержит один диффузорный канал с прямой осью, что не обеспечивает необходимую пропускную способность воздуха при заданных габаритах спирального корпуса, имеет низкие газодинамические и прочностные характеристики из-за высоких потерь полного давления. Корпус выполнен цельным, трудоемок и затратен при изготовлении, а также имеет большой вес.
Техническим результатом заявленного изобретения является повышение газодинамических и прочностных характеристик компрессора, а также снижение веса корпуса и трудозатрат на его изготовление.
Указанный технический результат обеспечивается тем, что спиральный корпус осевого компрессора высокого давления, выполненный в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала, согласно изобретению дополнительно содержит выходной фланец подвода воздуха на внутридвигательные нужды и выходной фланец подвода воздуха на самолетные нужды, выполненные расширяющимися к выходу и расположенные друг за другом по окружности корпуса, при этом ось выходного фланца подвода воздуха на внутридвигательные нужды и ось фланца подвода воздуха на самолетные нужды расположены под углом β1=25-50° относительно вертикальной оси, а ось выходного фланца перепуска воздуха расположена под углом β2=5-10° относительно горизонтальной оси, причем
F1/F2=1,30-1,35,
F1/F5=F1/F4=1,3-1,7,
F1/F3=2,0-2,5,
где F1 - площадь кольцевой щели забора воздуха,
F2 - максимальная площадь сечения спирального диффузорного канала перед фланцем перепуска воздуха,
F3 - площадь проходного сечения выходного фланца подвода воздуха на внутридвигательные нужды,
F4 - площадь проходного сечения выходного фланца подвода воздуха на самолетные нужды,
F5 - площадь проходного сечения выходного фланца перепуска воздуха, а корпус выполнен из двух частей, в местах крепления которых установлены ребра жесткости.
При этом угол между осями фланца перепуска воздуха и фланца подвода воздуха на внутридвигательные нужды β3=76°, угол между осями фланца подвода воздуха на внутридвигательные нужды и фланца подвода воздуха на самолетные нужды β4=160 и угол между осями фланца подвода воздуха на самолетные нужды и фланца перепуска воздуха β5=124°.
Повышение газодинамических и прочностных характеристик компрессора достигается за счет снижения потерь полного давления в спиральном корпусе, обеспечения равномерности воздушного потока в окружном и радиальном направлениях и обеспечения стабильности внутреннего диаметра корпуса в зоне подвода воздуха. При этом заявляемая конструкция спирального корпуса осевого компрессора высокого давления обладает меньшим весом (по сравнению с известными аналогами) и обеспечивает минимальные трудозатраты при его изготовлении.
Конструкция корпуса проиллюстрирована на чертежах:
на фиг. 1 показано продольное сечение;
на фиг. 2 показан вид А-А на фиг. 1.
Спиральный корпус, имеющий форму «улитки», включает кольцевую щель 1 забора воздуха, предназначенную для забора воздуха из проточной части компрессора (не показан) в кольцевую спиральную полость 2 и имеющую площадь F1, выходной фланец 3 перепуска воздуха. Спиральный диффузорный канал перед выходным фланцем 3 имеет максимальную площадь F2 сечения перепуска воздуха. Корпус содержит два дополнительных выходных фланца: выходной фланец 4 подвода воздуха на самолетные нужды и выходной фланец 5 подвода воздуха на внутридвигательные нужды. Выходные фланцы 4 и 5 выполнены расширяющимися к выходу и расположены друг за другом по окружности корпуса. Оси выходных фланцев 4 и 5 расположены под углом β1=25-50° относительно вертикальной оси, а ось выходного фланца 3 перепуска воздуха - под углом β2=5-10° относительно горизонтальной оси.
Площади F3, F4, F5 проходных сечений фланцев 5, 4, 3 на выходе и угловое (β3, β4, β5) расположение их по окружности корпуса определяют расчетным путем в зависимости от величин расходов и скоростей прохода воздуха через указанные фланцы, исходя из соблюдения следующих условий:
F1/F2=1,30-1,35,
F1/F5=F1/F4=1,3-1,7,
F1/F3=2,0-2,5,
где F1 - площадь кольцевой щели 1 забора воздуха,
F2 - максимальная площадь сечения спирального диффузорного канала перед фланцем 3 перепуска воздуха,
F3 - площадь проходного сечения выходного фланца 5 подвода воздуха на внутридвигательные нужды,
F4 - площадь проходного сечения выходного фланца 4 подвода воздуха на самолетные нужды,
F5 - площадь проходного сечения выходного фланца 3 перепуска воздуха.
Оптимальными величинами углов β3, β4, β5 являются: β3=76°, β4=160° и β5=124°.
Спиральный корпус осевого компрессора получен методом литья и выполнен разъемным, состоящим из двух частей 6 и 7, в местах крепления которых установлены ребра жесткости 8. Наклонная перегородка 9 служит для разграничения области начала подачи воздуха из кольцевой щели 1 и потока воздуха, идущего непосредственно на перепуск. Также перегородка 9 обеспечивает дополнительное жесткое крепление корпуса и стабильность внутреннего диаметра корпуса в зоне подвода воздуха.
Во время работы спирального корпуса на него действуют осевые силы до 20 тонн со стороны ротора компрессора. Были проведены трехмерные прочностные и газодинамические расчеты с помощью пакета ANSYS 14.0 и ANSYSCFX 14.0, результаты которых подтверждают эффективность использования заявляемой конструкции корпуса. А также при проектировании корпуса были проанализированы теоретические и аналитические зависимости относительных величин потерь энергии в диффузорных каналах (Ю.С. Подобуев, К.П. Селезнев, «Теория расчета осевых и центробежных компрессоров», 1957).
Заявляемая конструкция спирального корпуса осевого компрессора работает следующим образом.
Во время работы компрессора высокого давления через кольцевую щель 1, расположенную за направляющим аппаратом средней ступени, отбирается воздух, который поступает в кольцевую спиральную полость 2. По спиральной траектории воздух движется к местам его выхода. Часть воздуха через выходной фланец 4 поступает на самолетные нужды на низких режимах работы двигателя, причем заслонка фланца 5 закрыта. При высоких режимах работы двигателя часть воздуха через выходной фланец 5 поступает на внутридвигательные нужды, причем заслонка фланца 4 закрыта. Через фланец 3 осуществляется перепуск воздуха в каналах наружного контура на всех режимах.
Спиральный корпус работает на протяжении всего рабочего цикла компрессора, обеспечивая при этом постоянный отбор воздуха в зависимости от режима, диапазон которого меняется от 4 до 18% от расхода воздуха на входе в компрессор высокого давления.
Предложенную конструкцию корпуса осевого компрессора высокого давления планируется использовать на современных газотурбинных двигателях.
название | год | авторы | номер документа |
---|---|---|---|
ГЛУШИТЕЛЬ ШУМА ВЫПУСКА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1994 |
|
RU2090763C1 |
КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2000 |
|
RU2173796C1 |
ШИПОВАЯ ШПИЛЬКА И ШИПОВАННАЯ ШИНА | 2017 |
|
RU2716531C1 |
МУФТА | 1993 |
|
RU2039889C1 |
ГАЗОТУРБИННАЯ УСТАНОВКА | 2005 |
|
RU2305789C2 |
ШИПОВАЯ ШПИЛЬКА И ШИПОВАННАЯ ШИНА | 2017 |
|
RU2716522C1 |
ШИПОВАЯ ШПИЛЬКА И ШИПОВАННАЯ ШИНА | 2017 |
|
RU2716532C1 |
ПЫЛЕОТДЕЛИТЕЛЬ ДЛЯ НАДДУВА ВОЗДУХОМ ПОДШИПНИКОВЫХ ОПОР | 2000 |
|
RU2174874C1 |
ШИПОВАЯ ШПИЛЬКА И ШИПОВАННАЯ ШИНА | 2017 |
|
RU2716530C1 |
КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2002 |
|
RU2235908C2 |
Изобретение относится к конструкции полости отбора воздуха в корпусе осевого компрессора газотурбинного двигателя. Спиральный корпус осевого компрессора высокого давления выполнен в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала. Корпус дополнительно содержит выходной фланец подвода воздуха на внутридвигательные нужды и выходной фланец подвода воздуха на самолетные нужды. Два дополнтельных фланца выполнены расширяющимися к выходу и расположенные друг за другом по окружности корпуса. Ось выходного фланца подвода воздуха на внутридвигательные нужды и ось фланца подвода воздуха на самолетные нужды расположены под углом β1=25-50° относительно вертикальной оси. Ось выходного фланца перепуска воздуха расположена под углом β2=5-10° относительно горизонтальной оси. Площади проходных сечений фланцев на выходе и угловое расположение их по окружности корпуса определяют расчетным путем в зависимости от величин расходов и скоростей прохода воздуха через указанные фланцы, исходя из соблюдения определенных условий. Корпус выполнен из двух частей, в местах крепления которых установлены ребра жесткости. Достигается повышение газодинамических и прочностных характеристик компрессора, снижение веса корпуса и трудозатрат на его изготовление. 1 з.п. ф-лы, 2 ил.
1. Спиральный корпус осевого компрессора высокого давления, выполненный в форме «улитки» со спиральным диффузорным каналом, кольцевой щелью забора воздуха и выходным фланцем перепуска воздуха диффузорного канала, отличающийся тем, что дополнительно содержит выходной фланец подвода воздуха на внутридвигательные нужды и выходной фланец подвода воздуха на самолетные нужды, выполненные расширяющимися к выходу и расположенные друг за другом по окружности корпуса, при этом ось выходного фланца подвода воздуха на внутридвигательные нужды и ось фланца подвода воздуха на самолетные нужды расположены под углом β1=25-50° относительно вертикальной оси, а ось выходного фланца перепуска воздуха расположена под углом β2=5-10° относительно горизонтальной оси, причем
F1/F2=1,30-1,35,
F1/F5=F1/F4=1,3-1,7,
F1/F3=2,0-2,5,
где F1 - площадь кольцевой щели забора воздуха,
F2 - максимальная площадь сечения спирального диффузорного канала перед фланцем перепуска воздуха,
F3 - площадь проходного сечения выходного фланца подвода воздуха на внутридвигательные нужды,
F4 - площадь проходного сечения выходного фланца подвода воздуха на самолетные нужды,
F5 - площадь проходного сечения выходного фланца перепуска воздуха, а корпус выполнен из двух частей, в местах крепления которых установлены ребра жесткости.
2. Спиральный корпус осевого компрессора высокого давления по п. 1, отличающийся тем, что угол между осями фланца перепуска воздуха и фланца подвода воздуха на внутридвигательные нужды β3=76, угол между осями фланца подвода воздуха на внутридвигательные нужды и фланца подвода воздуха на самолетные нужды β4=160° и угол между осями фланца подвода воздуха на самолетные нужды и фланца перепуска воздуха β5=124°.
СПИРАЛЬНЫЙ КОРПУС ДЛЯ ТУРБОМАШИН | 1994 |
|
RU2118463C1 |
КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2005 |
|
RU2302558C1 |
Способ коагуляции гидроторфа | 1941 |
|
SU64288A1 |
US 7159402 B2, 09.01.2007 |
Авторы
Даты
2015-10-27—Публикация
2014-06-02—Подача