СПОСОБ ЦИФРОВОГО ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН Российский патент 2015 года по МПК G01R27/00 

Описание патента на изобретение RU2567441C1

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ дистанционного измерения емкости на высоких частотах с определением резонансной частоты высокочастотного резонатора (см. RU 2168730 С1, 10.06.2001). На колебательную систему этого способа, выполненную в виде линии с распределенными параметрами, подают высокочастотный сигнал с частотой, равной резонансной частоте высокочастотного резонанса в конце линии с распределенными параметрами, подключают к колебательной системе минимальную Ckmin и максимальную Ckmax калибровочные емкости, определяют соответствующие им резонансные частоты fp1 и fp2, получают калибровочную характеристику, подключают к колебательной системе измеряемую емкость и определяют соответствующие ей резонансную частоту fpe3x, при условии fp2<fpe3x<fp1 о величине измеряемой емкости судят по частоте высокочастотного резонанса и по калибровочной характеристике.

Недостатком этого известного технического решения является сложность процедуры подключения калибровочных и измеряемой емкостей к колебательной системе.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип электромагнитный способ измерения тока (см. Информационно-измерительная техника и электроника, учебник: под ред. Г.Г. Раннева, М.: Издательский центр «Академия», 2007, стр. 298). Для перемещения подвижной части измерительного механизма в этом случае используется энергия системы, состоящей из плоской катушки (неподвижная часть) и сердечника (подвижная часть). Измеряемый ток подают в цепь плоской катушки, и в результате этого сердечник, выполненный из пермаллоя, втягивается в зазор плоской катушки. Все это приводит к тому, что стрелка, жестко связанная с осью сердечника, отклоняется и в отсчетном устройстве измеряется величина тока.

Недостатком этого устройства можно считать низкую точность измерения, связанную со стрелочным отсчетом и эффектом параллакса.

Техническим результатом заявляемого технического решения является повышение точности измерения электрической величины.

Технический результат достигается тем, что в способе цифрового измерения электрических величин, включающем преобразование измеряемой электрической величины и отсчет измеренной электрической величины, возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый резонатор, измеряют резонансную частоту открытого резонатора и по измеренной частоте открытого резонатора, производят отсчет величины измеряемой электрической величины.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что изменение резонансной частоты открытого резонатора, обусловленное перемещением плоского отражателя открытого резонатора относительно вогнутого при воздействии на него подвижной части измерительного механизма, дает возможность измерить величину электрической величины в цифровом виде.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу цифрового измерения электрических величин на основе резонансной частоты открытого резонатора при воздействии на его плоский отражатель подвижной части измерительного механизма, повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ цифрового измерения электрических величин.

Устройство, реализующее данный способ, содержит неподвижной элемент 1, подвижной элемент 2, плоскую пластину 3, вогнутую пластину 4, элемент ввода электромагнитных колебаний 5, соединенный с выходом микроволнового генератора 6, элемент вывода электромагнитных колебаний 7, подключенный к входу детектора 8 и измеритель амплитудно-частотных характеристик 9.

Предлагаемый способ основывается на использовании свойств электромагнитных систем и колебательных характеристик открытых резонаторов и работает следующим образом. Согласно этому способу сначала измеряемую электрическую величину с помощью электромагнитной системой преобразовывают и потом этим преобразованным сигналом перестраивают резонансную частоту открытого резонатора. После этого, измерением резонансной частоты перестроенного по частоте открытого резонатора, осуществляют отсчет электрического сигнала в цифровом виде.

Электромагнитная система данного способа включает в себя неподвижную часть - катушку и сердечник - подвижную часть, а открытый резонатор - вогнутую пластину (неподвижная) и плоскую пластину с возможностью перемещения относительно вогнутой неподвижной пластины.

В этом способе измеряемую электрическую величину подают на неподвижной элемент 1. Пусть в рассматриваемом случае в качестве последнего используется индуктивная катушка и контролируемым электрическим параметритом является электрический ток. При протекании тока через катушку вокруг катушки образуется магнитное поле. Если предположить, что в магнитном поле находится сердечник, например, из пермаллоя, то сердечник, служащий подвижным элементом 2, будет втягиваться в зазор катушки. Согласно данному техническому решению ось сердечника жестко связывают с плоской пластиной 3 открытого резонатора. Открытый резонатор, как уже было показано выше, представляет собой плоскую пластину 3 (отражатель) и вогнутую пластину 4 (отражатель). Отражатели разнесены друг от друга на некотором расстоянии

Из теории резонансных систем известно определение резонансной частоты открытого резонатора по формуле:

,

где ω - резонансная частота открытого резонатора при отсутствии перемещения плоской пластины, q - целое число (практически q>3), с - скорость распространения электромагнитной волны между металлическим пластинами (свободное пространство), l - расстояние между вогнутой и плоской металлическими пластинами (отражателями) открытого резонатора.

Перемещение сердечника выше приведенной электромагнитной системы, ось которого жестко закреплена с плоской пластиной открытого резонатора, должно привести пропорциональное перемещение плоской пластины относительно вогнутой пластины открытого резонатора. В силу этого, как видно из приведенной формулы (изменение расстояние между отражателями), частота резонатора, возбужденного электромагнитными колебаниями, изменится, и для измененной частоты можно записать

,

ω1 - где резонансная частота резонатора после перемещения плоской пластины относительно вогнутой, l1 - величина перемещения плоской пластины. Последняя формула показывает, что уменьшение расстояния между пластинами (отражателями) обуславливает увеличение резонансной частоты и наоборот, увеличение расстояния - уменьшение частоты. Отсюда можно заключить, что втягивание сердечника в зазор катушки, зависящее от величины измеряемого электрического тока, прошедшего через цепь катушки, преобразуемое в перемещение плоской пластины открытого резонатора относительно его вогнутой пластины, дает возможность судить о величине измеряемого электрического тока резонансной частотой открытого резонатора, т.е. получить информацию об измеряемом токе в цифровом виде.

Для возбуждения открытого резонатора электромагнитными колебаниями с выхода микроволнового генератора 6 сигнал поступает на вход элемента ввода колебаний 5. Последний обеспечивает ввод колебаний в резонатор, образованный двумя металлическими пластинами. После этого изменением частоты выходного сигнала микроволнового генератора добиваются резонанса в данном резонаторе. Для наблюдения резонанса и оценивания его резонансной частоты, сигнал с полости резонатора с помощью элемента вывода колебаний 7 передают в детектор 8. Продетектированный сигнал с выхода этого детектора поступает на вход измерителя амплитудно-частотных характеристик 9. Посредством этого устройства фиксируется резонанс в рассматриваемом открытом резонаторе и оценивается резонансная частота, определяемая формулой (1). При перемещении плоской пластины открытого резонатора (воздействие сердечника на плоскую пластину) относительно вогнутой пластины, изменяют частоту выходного сигнала микроволнового генератора для того, чтобы снова найти резонанс, связанный с определенным положением плоской пластины. При этом измеренная резонансная частота должна соответствовать значению, вычисленному по формуле (2). Следовательно, измеряя резонансные частоты при отсутствии и наличии перемещения плоской пластины, по разности этих частот (ω1-ω) можно определить величину перемещения плоской пластины, связанную со значением измеряемого электрического тока. Отсюда вытекает, что величину измеряемого электрического тока можно выразить в цифровом виде, т.е. вместо стрелочного отсчета будем иметь цифровой отсчет.

Таким образом, в предлагаемом техническом решении, использующем взаимодействие электромагнитной системы с колебательными характеристиками открытого резонатора, на основе измерения резонансной частоты открытого резонатора, содержащего плоскую и вогнутую металлические пластины, можно обеспечить повышение точности измерения электрических величин.

Предлагаемый способ успешно может быть использован для измерения электрических и радиотехнических параметров.

Похожие патенты RU2567441C1

название год авторы номер документа
Способ контроля процесса плавки в вакуумной дуговой печи 2015
  • Ахобадзе Гурам Николаевич
RU2620537C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАЛЫХ ЗНАЧЕНИЙ ТОКОВ 2017
  • Ахобадзе Гурам Николаевич
RU2654911C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СПЛОШНОСТИ ГАЗОЖИДКОСТНОГО ПОТОКА 2008
  • Ахобадзе Гурам Николаевич
RU2354959C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПОСТУПАТЕЛЬНОГО ПЕРЕМЕЩЕНИЯ 2012
  • Ахобадзе Гурам Николаевич
RU2515072C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ЗАКУПОРЕННЫХ БАНОК ИЗ ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА 2005
  • Ахобадзе Гурам Николаевич
RU2301978C1
Цифровой измеритель электрического тока 2018
  • Ахобадзе Гурами Николаевич
RU2680988C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ЗАКУПОРЕННЫХ БАНОК 1997
  • Ахобадзе Г.Н.
RU2120606C1
СПОСОБ ВИХРЕТОКОВОГО ИЗМЕРЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ ПАРАМЕТРОВ 2020
  • Кибрик Григорий Евгеньевич
RU2747916C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВРЕМЕНИ ЖИЗНИ НЕОСНОВНЫХ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКАХ 2006
  • Алексеев Алексей Валентинович
  • Гришин Михаил Викторович
  • Короткевич Аркадий Владимирович
  • Литвинович Владимир Владимирович
  • Эйдельман Борис Львович
RU2318218C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СПЛОШНОСТИ ГАЗОЖИДКОСТНОГО ПОТОКА 2012
  • Ахобадзе Гурам Николаевич
RU2491534C1

Реферат патента 2015 года СПОСОБ ЦИФРОВОГО ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый резонатор, измеряют резонансную частоту открытого резонатора и по измеренной частоте открытого резонатора, производят отсчет величины измеряемой электрической величины. Техническим результатом заявляемого технического решения является повышение точности измерения электрической величины. 1 ил.

Формула изобретения RU 2 567 441 C1

Способ цифрового измерения электрических величин, включающий преобразование измеряемой электрической величины и отсчет измеренной электрической величины, отличающийся тем, что возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый резонатор, измеряют резонансную частоту открытого резонатора и по измеренной частоте открытого резонатора, производят отсчет величины измеряемой электрической величины.

Документы, цитированные в отчете о поиске Патент 2015 года RU2567441C1

Информационно-измерительная техника и электроника, учебник: под ред
Г.Г
Раннева, М.: Издательский центр "Академия", 2007, стр
РАССЕИВАЮЩИЙ ТОПЛИВО МЕХАНИЗМ 1920
  • Палько Г.И.
SU298A1

RU 2 567 441 C1

Авторы

Ахобадзе Гурам Николаевич

Даты

2015-11-10Публикация

2014-05-29Подача