ОППОЗИТНЫЙ БЕСШАТУННЫЙ ПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ Российский патент 2015 года по МПК F02B75/32 F02B75/24 

Описание патента на изобретение RU2568350C1

Изобретение относится к области двигателестроения. Изобретение предлагает конструкцию оппозитного бесшатунного поршневого двигателя внутреннего сгорания (ДВС).

За прототип принят оппозитный бесшатунный поршневой двигатель С. Баландина.

История развития бесшатунных поршневых двигателей, предложенных С. Баландиным, берет начало в тридцатых-сороковых годах прошлого века, когда в конструкторском бюро, где работал автор, были разработаны и построены несколько типов авиационных двигателей с необычным, отличным от кривошипно-шатунного, силовым механизмом.

Все построенные образцы основывались на схеме с одной избыточной кинематической связью.

При кажущейся простоте механизм содержал неотработанные кинематические связи, а в применении к тепловым машинам они были слабо изучены и поэтому их возможности плохо прогнозировались. Всего одна избыточная кинематическая связь в таком сложном механизме как ДВС ставила под сомнение всю его дальнейшую работоспособность. Тем более не было понимания того, как от этой связи избавиться, синхронизирующий механизм, о котором идет речь, являлся неотъемлемой частью самого двигателя.

Приведем пример, поясняющий принцип симметрии, в приложении к рассматриваемому бесшатунному силовому механизму. Лучший образец - кинематическая схема оппозитного бесшатунного двигателя С. Баландина, в котором чередование между рабочими тактами происходит равномерно, через 180° по углу поворота коленчатого вала. Конструкция силового механизма включает: четыре рабочих поршня со штоками, соединенные попарно; два рабочих крейцкопфа, перемещающиеся по оси движения поршней, три синхронизирующих крейцкопфа, перемещающиеся в плоскости, перпендикулярной плоскости цилиндров. Названные элементы объединены общим планетарно вращающимся коленчатым валом и располагаются на его пяти шейках. Шестая и седьмая шейки коленчатого вала предназначены для установки противовесов и передачи крутящего момента валу отбора мощности. У каждого рабочего поршня, по обе стороны и на равных расстояниях, располагаются синхронизирующие крейцкопфы. В оппозитном двигателе они выполняют следующие функции.

- Совместно с рабочими крейцкопфами обеспечивают синхронизацию коленчатого вала.

- Воспринимают на себя основную нагрузку от газовых сил, отделяя крейцкопфы рабочих цилиндров от "ударного" нагружения в момент воспламенения горючих газов в соседних цилиндрах.

- Выполняют функции противовесов для уравновешивания всех масс. Рассмотренный механизм обладает широкими кинематическими возможностями, он прекрасно уравновешивается.

И в заключении перечислим основные преимущества, которыми располагают бесшатунные ДВС.

- Компоновка бесшатунного двигателя позволяет значительно сократить объем моторного отсека за счет рационального расположения узлов и деталей двигателя.

- Взаимное сочетание газовых сил и сил инерции приводит к значительному уменьшению результирующих сил, нагружающих кинематические звенья, что позволяет увеличить механический КПД двигателя.

- В бесшатунном двигателе, чем больше масса поршней со штоками и крейцкопфами и чем выше обороты двигателя (в известных пределах), тем меньше нагрузка на подшипники, в тронковом двигателе - наоборот.

- Количество функций, возложенных на рабочие поршни уменьшается (поршни перестают быть парами трения), соответственно, надежность их работы увеличивается.

- Допускается возможность организации рабочего процесса в двигателе по обе стороны рабочего поршня или использования подпоршневого пространства для компрессорного наддува.

- Появляется возможность улучшения системы охлаждения поршней прокачиванием масла через поршневые штоки и поршни для их эффективного охлаждения.

- Становится возможным для прямолинейно движущихся поршней применить лабиринтный вид уплотнений с полным или частичным отказом от поршневых колец.

Основная же причина того, что применение рассматриваемой кинематической схемы не получило практической реализации, состоит в том, что она сложнее обычного кривошипно-шатунного механизма. Большое количество сопрягаемых элементов требует высокого технологического уровня их изготовления. Значение их суммарного допуска должно быть меньше величины диаметрального зазора одного из крайних подшипников планетарного вала, иначе невозможно обеспечить его правой и левой половине синхронного вращения. Уложиться же в этот допуск технологически сложно. (http://www.volnovoidvigatel.ru/controd-free-engines/index.html).

В двигателе Баландина, имеющего одну избыточную кинематическую связь, неизбежно при повышении температуры изменяются размеры деталей, а также неточность, больше чем зазор в подшипниках, в размерах деталей при изготовлении и их размещении приводит к перекосам, заклиниванию, задирам деталей. Дальнейшее усовершенствование конструкции двигателя Баландина существенно усложнило ее, сведя на нет изначально запланированные преимущества.

Предлагаемое заявителем устройство содержит по два цилиндра на каждой из параллельных осей, в каждой паре цилиндров по два поршня, жестко соединенных пластиной, снабженной поперечной прорезью с двумя направляющими, по которым свободно скользит крейцкопф с подшипниками для шейки коленчатого вала перпендикулярно движению поршней, и коленчатый вал с жестким креплением в подшипниковых опорах, стоящих по обе стороны от пластин, и с взаимно перпендикулярными шейками, вращающимися во внутренних подшипниках крейцкопфа, обеспечивающий чередование между рабочими тактами через 90°.

Такая конструкция бесшатунного двигателя позволяет устранить боковое давление на цилиндры, избежать эффекта верхней мертвой точки и устранить перекосы, задиры, усиленный износ, а также снимать мощность с одного конца коленчатого вала, упрощая конструкцию.

Прототип имеет два рабочих крейцкопфа, скользящих соосно с поршнями, и три синхронизирующих, а предлагаемое устройство имеет два крейцкопфа, свободно скользящих перпендикулярно движению поршней по направляющим в поперечной прорези пластины, соединяющей два поршня. Поперечное перемещение крейцкопфа осуществляется давлением смеси газов цилиндра с перпендикулярной шейкой коленвала, крейцкопфы имеют одну степень свободы и не оказывают давления на боковые стенки цилиндров, что повышает механический КПД и, соответственно, уменьшает износ цилиндров и поршней, делает механизм высоконадежным, с длительной работоспособностью. Жесткое крепление коленвала, в отличие от планетарного в прототипе, устраняет перекосы и задиры, а также дает возможность снимать мощность с одного конца коленвала.

Это, казалось бы, простое изменение конструкции, принципиально меняет свойства двигателя.

Коленчатый вал с взаимно перпендикулярными шейками, которые вращаются во внутренних подшипниках крейцкопфа, обеспечивает чередование между рабочими тактами через 90°, что позволяет избегать эффекта верхней мертвой точки. Крейцкопфы имеют скользящие подшипники: два плоских наружных для направляющих в поперечной прорези пластины и внутренний для шейки коленвала, и имеющие систему смазки через каналы в коленчатом валу, продолжающуюся на наружную поверхность крейцкопфа, аналогичную, как при кривошипно-шатунном механизме, кроме того, смазка производится масляным туманом, порождаемым вращением коленчатого вала. Кроме того, уменьшается длина самих поршней за счет отсутствия юбки поршня и места для поршневого пальца, остается только место для установки поршневых колец, что сокращает длину цилиндров и, соответственно, габариты и вес конструкции. Кроме того, ввиду увеличения суммарной длины двух поршней, соединенных вместе, уменьшается боковое давление и износ цилиндров. Также существенным технологическим преимуществом является то, что противоположные цилиндры обрабатываются с одной установки, как и два жестко соединенных поршня. Габариты четырехцилиндрового двигателя практически будут соответствовать габаритам обычного двухцилиндрового.

Данная конструкция может использоваться для всех видов двигателей: бензиновых, дизельных, четырехтактных, двухтактных, четырехцилиндровых, 8 и более цилиндров с использованием обычных систем газораспределения, зажигания, питания, впрыска и т.д. Эти системы в данном изобретении рассматриваться не будут.

Также система коленвал - крейцкопф, свободно перемещающийся в поперечной прорези пластины, соединяющей два поршня, может использоваться в устройствах, где необходимо преобразовать вращение в поступательное движение: в насосах, компрессорах и т.п.

На Фиг. 1 изображены: кинематическая схема оппозитного бесшатунного поршневого двигателя внутреннего сгорания: две пары поршней (1, 2 и 3, 4); (5) - коленчатый вал; (6, 7 и 8, 9) - две пары оппозитных цилиндров; (10) - коренные подшипники; (11) - подшипники шейки коленвала; (12) - крейцкопф; (13) - пластина, имеющая поперечную прорезь с двумя направляющими;

На Фиг. 2 - изображен фронтальный вид поперечной прорези пластины, соединяющей два поршня; (14) - плоский подшипник для направляющих; и те же (11) и (12).

Оппозитный бесшатунный поршневой двигатель внутреннего сгорания содержит по два оппозитных цилиндра (6, 7 и 8, 9) на каждой из параллельных осей, в каждой паре цилиндров есть по два поршня (1, 2 и 3, 4), жестко соединенные попарно пластинами (13) с поперечной прорезью, с направляющими, по которым свободно скользят крейцкопфы (12) с плоскими подшипниками (14) для направляющих в поперечной прорези и цилиндрическими подшипниками (11) скольжения для шейки коленчатого вала (5).

Рациональный двухсторонний рабочий процесс в цилиндрах, когда при рабочем ходе в одном цилиндре, в противоположном происходит сжатие, частично разгружает коленчатый вал.

Взаимно-перпендикулярное расположение шеек коленвала для соседних оппозитных цилиндров позволяет избегать эффекта верхней мертвой точки (ВМТ): когда при начале рабочего хода в верхней мертвой точке находится один из поршней, у второго поршня на перпендикулярной шейке крутящий момент на коленчатом валу максимален, в результате крутящий момент бесшатунного двигателя - величина постоянная. Математически это выглядит так: если момент по одной оси X, а по перпендикулярной Y, то суммарный момент (формула окружности):

X2+Y2=1,

Устройство работает при четырехтактном цикле следующим образом: когда в 6 цилиндре поршень находится в верхней мертвой точке (ВМТ), смесь сжата, начинается рабочий ход (РХ), в 7 цилиндре начинается сжатие рабочей смеси (СЖ), в 8 цилиндре - вторая половина выхлопа (ВХ), в 9 - вторая половина всасывания (ВС).

При повороте коленвала на 90 градусов в 8 и 9 цилиндрах заканчиваются их циклы и начинается всасывание (в 8) и сжатие (в 9). В 6 и 7 цилиндрах продолжатся прежние циклы: в 6 - рабочий ход, в 7 - сжатие.

При повороте коленвала на 180 градусов в 6 и 7 цилиндрах заканчиваются их циклы и начинается выхлоп (в 6) и рабочий ход (в 7). В 8 и 9 цилиндрах продолжатся прежние циклы: в 8 - всасывание, в 9 - сжатие.

При повороте коленвала на 270 градусов в 8 и 9 цилиндрах заканчиваются их циклы и начинается сжатие (в 8) и рабочий ход (в 9). В 6 и 7 цилиндрах продолжатся прежние циклы: в 6 - выхлоп, в 7 - рабочий ход.

При повороте коленвала на 360 градусов в 6 и 7 цилиндрах заканчиваются их циклы и начинается всасывание (в 6) и выхлоп (в 7). В 8 и 9 цилиндрах продолжатся прежние циклы: в 8 - сжатие, в 9 - рабочий ход.

При повороте коленвала на 450 градусов в 8 и 9 цилиндрах заканчиваются их циклы и начинается рабочий ход (в 8) и выхлоп (в 9). В 6 и 7 цилиндрах продолжатся прежние циклы: в 6 - всасывание и в 7 - выхлоп.

При повороте коленвала на 540 градусов в 6 и 7 цилиндрах заканчиваются их циклы и начинается сжатие (в 6) и всасывание (в 7). В 8 и 9 цилиндрах продолжатся их прежние циклы: в 8 - рабочий ход, в 9 - выхлоп.

При повороте коленвала на 630 градусов в 8 и 9 цилиндрах заканчиваются их циклы и начинается выхлоп (в 8) и всасывание (в 9). В 6 и 7 цилиндрах продолжатся прежние циклы: в 6 - сжатие, в 7 - всасывание.

При повороте коленвала на 720 градусов в 6 и 7 цилиндрах заканчиваются их циклы и начинается рабочий ход (в 6) и сжатие (в 7). В 8 и 9 продолжатся прежние циклы: в 8 - выхлоп, в 9 - всасывание.

Анализ циклов четырехтактного двигателя показывает, что на два оборота коленвала четверть оборота (от 630 до 720°) отсутствует рабочий ход, от 270 до 360° одновременно в 9 и 7 цилиндрах - рабочий ход, в остальных (РХ) последовательно. Это можно устранить, изготовив восьмицилиндровый двигатель, который практически уложится в габариты четырехцилиндрового двигателя. Мы получим одновременно (РХ) в двух цилиндрах, сдвинутые на 90°.

Похожие патенты RU2568350C1

название год авторы номер документа
Бесшатунный механизм поршневой машины 2021
  • Становской Виктор Владимирович
  • Казакявичюс Сергей Матвеевич
  • Становской Александр Викторович
  • Ежков Константин Олегович
  • Шестаков Александр Александрович
  • Попов Алексей Владимирович
RU2781324C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С БЕСШАТУННЫМ МЕХАНИЗМОМ 2001
  • Хадиев Ромиль Габдуллович
RU2222704C2
ПОРШНЕВОЙ, БЕСШАТУННЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ (ВАРИАНТЫ) 2009
  • Неклюдов Александр Афанасьевич
RU2406838C2
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2002
  • Беляев А.И.
  • Чистов Н.М.
  • Троицкий А.П.
RU2209325C1
Поршневой двигатель 1989
  • Маришкин Анатолий Константинович
  • Маришкин Дмитрий Анатольевич
SU1740719A1
БЕСШАТУННЫЙ ПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 2001
  • Бабаева Е.Е.
  • Голубков Е.П.
  • Голубков П.Е.
  • Кобозева С.Н.
  • Косырев А.А.
  • Рыбаков В.В.
  • Полужевцев Ю.М.
RU2205278C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С БЕСШАТУННЫМ МЕХАНИЗМОМ 2002
  • Хадиев Ромиль Габдуллович
RU2276276C2
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С БЕСШАТУННЫМ МЕХАНИЗМОМ 2001
  • Хадиев Ромиль Габдуллович
  • Хадиев Ринат Габдуллович
RU2242625C2
Двигатель внутреннего сгорания 2017
  • Зыбин Александр Тихонович
RU2685750C1
Поршневой двигатель 1989
  • Маришкин Анатолий Константинович
SU1733653A1

Иллюстрации к изобретению RU 2 568 350 C1

Реферат патента 2015 года ОППОЗИТНЫЙ БЕСШАТУННЫЙ ПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение предлагает конструкцию оппозитного бесшатунного поршневого двигателя внутреннего сгорания, который может использоваться для бензиновых или дизельных, как для четырехтактных, так и для двухтактных ДВС, как четырех цилиндровых, так и 8 и более цилиндров с использованием обычных систем газораспределения, зажигания, питания, впрыска и т.д. Технический результат - получение бесшатунного двигателя внутреннего сгорания со свободно перемещающимися крейцкопфами по поперечной прорези, устраняющими боковое давление на цилиндры, а также устраняющими эффект верхней мертвой точки. Оппозитный бесшатунный поршневой двигатель внутреннего сгорания содержит по два цилиндра на каждой из параллельных осей, в каждой паре цилиндров есть по два поршня, жестко соединенных пластиной, имеющей поперечную прорезь с двумя направляющими, по которым скользит крейцкопф с подшипниками для шейки коленвала. Жесткое крепление коленчатого вала в подшипниковых опорах, стоящих по обе стороны от пластин, с шейками, которые вращаются во внутренних подшипниках крейцкопфа, обеспечивающими чередование между рабочими тактами через 90°, позволяет избегать эффекта верхней мертвой точки. Свободное поперечное перемещение крейцкопф без бокового давления на стенки цилиндров уменьшает износ, повышает КПД. 2 ил.

Формула изобретения RU 2 568 350 C1

Оппозитный бесшатунный двигатель внутреннего сгорания, содержащий по два цилиндра на каждой из параллельных осей, в каждой паре цилиндров по два поршня, жестко соединенных пластиной, снабженной поперечной прорезью с двумя направляющими, по которым свободно скользит крейцкопф с подшипниками для шейки коленчатого вала перпендикулярно движению поршней, и коленчатый вал с жестким креплением в подшипниковых опорах, стоящих по обе стороны от пластин, и с взаимно перпендикулярными шейками, вращающимися во внутренних подшипниках крейцкопфа, обеспечивающий чередование между рабочими тактами через 90°.

Документы, цитированные в отчете о поиске Патент 2015 года RU2568350C1

US 20040255879 A1, 23.12.2004
0
SU138732A1
БЕСШАТУННЫЙ ПОРШНЕВОЙ ДВИГАТЕЛЬ 1996
  • Рюхин Андрей Дмитриевич
  • Чурсинов Вячеслав Евстафьевич
RU2122638C1
КРИВОШИПНЫЙ МЕХАНИЗМ ПОРШНЕВОГО ДВИГАТЕЛЯ 1992
  • Болычевский Юрий Михайлович
RU2029190C1
WO 2013095112 A1, 27.06.2013.

RU 2 568 350 C1

Авторы

Цовбун Николай Моисеевич

Даты

2015-11-20Публикация

2014-08-26Подача