СПОСОБ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ, ВЫРАБАТЫВАЕМОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИЕЙ Российский патент 2015 года по МПК F01K17/02 

Описание патента на изобретение RU2570132C2

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K 17/02, 27.04.2006).

Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).

В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды.

Таким образом, в известном способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий направление отработавшего пара из паровой турбины в паровое пространство конденсатора для конденсации на поверхности конденсаторных трубок, направление конденсата с помощью конденсатного насоса конденсатора паровой турбины в систему регенерации, согласно настоящему изобретению, дополнительно используют систему маслоснабжения подшипников паровой турбины с маслоохладителем и конденсационную установку, состоящую из последовательно соединенных паровой турбины с производственным отбором пара и с электрогенератором, конденсатора и конденсатного насоса, при этом дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора, причем указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, и который состоит из последовательно соединенных турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, при этом низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в упомянутом маслоохладителе, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в упомянутом турбодетандере и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного углекислого газа СО2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором и конденсационную установку.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - система маслоснабжения подшипников паровой турбины,

11 - сливной трубопровод,

12 - маслобак,

13 - маслонасос,

14 - маслоохладитель,

15 - напорный трубопровод,

16 - конденсационная установка,

17 - паровая турбина с производственным отбором пара,

18 - электрогенератор паровой турбины с производственным отбором пара,

19 - конденсатор паровой турбины с производственным отбором пара,

20 - конденсатный насос конденсатора паровой турбины с производственным отбором пара.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, а также систему 10 маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод 11, маслобак 12, маслонасос 13 и маслоохладитель 14, выход которого по нагреваемой среде соединен с напорным трубопроводом 15.

В тепловую электрическую станцию введены конденсационная установка 16 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Конденсационная установка 16 содержит последовательно соединенные паровую турбину 17 с производственным отбором пара, имеющую электрогенератор 18, конденсатор 19 паровой турбины с производственным отбором пара и конденсатный насос 20 конденсатора паровой турбины с производственным отбором пара.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом маслоохладителя 14, а выход маслоохладителя 14 по нагреваемой среде соединен с входом конденсатора 19 паровой турбины с производственным отбором пара, выход конденсатора 19 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.

Способ включает в себя направление отработавшего пара из паровой турбины 1 в паровое пространство конденсатора 2 для конденсации на поверхности конденсаторных трубок, направление конденсата с помощью конденсатного насоса 3 конденсатора паровой турбины 1 в систему регенерации.

Отличием предлагаемого способа является то, что дополнительно используют систему 10 маслоснабжения подшипников паровой турбины 1 с маслоохладителем 14 и конденсационную установку 16, состоящую из последовательно соединенных паровой турбины 17 с производственным отбором пара и с электрогенератором 18, конденсатора 19 и конденсатного насоса 20, при этом дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 10 маслоснабжения подшипников паровой турбины 1 и утилизацию высокопотенциальной теплоты пара производственного отбора, причем указанные утилизации осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, и который состоит из последовательно соединенных турбодетандера 6 с электрогенератором 7, теплообменника-конденсатора 8 и конденсатного насоса 9, при этом низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в упомянутом маслоохладителе 14, испаряют и перегревают в конденсаторе 19 паровой турбины 17 с производственным отбором пара, расширяют в упомянутом турбодетандере 6 и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.

Пример конкретного выполнения.

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование низкопотенциальной тепловой энергии системы 10 маслоснабжения подшипников паровой турбины 1 и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 17 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию низкопотенциальной теплоты системы 10 маслоснабжения подшипников паровой турбины 1 и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 17 с производственным отбором пара осуществляют путем последовательного нагрева, соответственно, в маслоохладителе 14 и конденсаторе 19 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа CO2, который направляют на нагрев в маслоохладитель 14, куда поступает нагретое масло системы 10 маслоснабжения подшипников паровой турбины 1 с температурой в интервале от 313,15 К до 348,15 К.

В процессе теплообмена нагретого масла с сжиженным углекислым газом CO2 в маслоохладителе 14 происходит нагрев сжиженного углекислого газа CO2 до критической температуры 304,13 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, и далее его направляют на испарение и перегрев в конденсатор 19 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 17 при температуре около 573 К.

Пар, поступающий из производственного отбора паровой турбины 17 в паровое пространство конденсатора 19, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный углекислый газ CO2). Мощность паровой турбины 17 передается соединенному на одном валу основному электрогенератору 18.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 20 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.

В процессе конденсации пара производственного отбора в конденсаторе 19 паровой турбины происходит испарение сжиженного углекислого газа CO2 и дальнейший его перегрев до сверхкритической температуры от 304,13 К до 390 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа CO2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ CO2 имеет температуру около 288 К с влажностью, не превышающей 12%.

Далее, при снижении температуры углекислого газа CO2 происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии углекислый газ CO2 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 16 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя 5 с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

Похожие патенты RU2570132C2

название год авторы номер документа
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
  • Гафуров Наиль Маратович
RU2560509C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2013
  • Гафуров Айрат Маратович
RU2570961C2
СПОСОБ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ, ВЫРАБАТЫВАЕМОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИЕЙ 2014
  • Гафуров Айрат Маратович
RU2570133C2
СПОСОБ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ, ВЫРАБАТЫВАЕМОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИЕЙ 2014
  • Гафуров Айрат Маратович
RU2562738C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
  • Гафуров Наиль Маратович
RU2560498C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
RU2560605C1
СПОСОБ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ, ВЫРАБАТЫВАЕМОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИЕЙ 2014
  • Гафуров Айрат Маратович
RU2562741C1
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2014
  • Гафуров Айрат Маратович
RU2560617C1
СПОСОБ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ, ВЫРАБАТЫВАЕМОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИЕЙ 2014
  • Гафуров Айрат Маратович
RU2562727C1
СПОСОБ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ, ВЫРАБАТЫВАЕМОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИЕЙ 2014
  • Гафуров Айрат Маратович
RU2562745C1

Реферат патента 2015 года СПОСОБ УТИЛИЗАЦИИ ТЕПЛОВОЙ ЭНЕРГИИ, ВЫРАБАТЫВАЕМОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИЕЙ

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии. В способе утилизации отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, а конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем. Все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Использование изобретения позволяет повысить коэффициента полезного действия ТЭС за счет дополнительной выработки электрической энергии. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 570 132 C2

1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий направление отработавшего пара из паровой турбины в паровое пространство конденсатора для конденсации на поверхности конденсаторных трубок, направление конденсата с помощью конденсатного насоса конденсатора паровой турбины в систему регенерации, отличающийся тем, что дополнительно используют систему маслоснабжения подшипников паровой турбины с маслоохладителем и конденсационную установку, состоящую из последовательно соединенных паровой турбины с производственным отбором пара и с электрогенератором, конденсатора и конденсаторного насоса, при этом дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию высокопотенциальной теплоты пара производственного отбора, причем указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, и который состоит из последовательно соединенных турбодетандера с электрогенератором, теплообменника-конденсатора и конденсатного насоса, при этом низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в упомянутом маслоохладителе, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в упомянутом турбодетандере, снижают его температуру в упомянутом теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.

2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ СО2.

Документы, цитированные в отчете о поиске Патент 2015 года RU2570132C2

ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ 2004
  • Шарапов Владимир Иванович
  • Орлов Михаил Евгеньевич
  • Подстрешная Наталья Сергеевна
RU2269014C2
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ 2004
  • Шарапов Владимир Иванович
  • Орлов Михаил Евгеньевич
  • Подстрешная Наталья Сергеевна
RU2268372C2
КОАКСИАЛЬНО-ТОРЦЕВОЙ ТЕПЛОТРУБНЫЙ ДВИГАТЕЛЬ 2006
  • Ежов Владимир Сергеевич
RU2320879C1
US 7856829 B2, 28.12.2010
JP 2011226489 A, 10.11.2011
АНДРЮЩЕНКО В.И
и др
"Теплофикационные установки и их использование", М., Высшая школа, 1989, стр
Крутильный аппарат 1922
  • Лебедев Н.Н.
SU233A1

RU 2 570 132 C2

Авторы

Гафуров Айрат Маратович

Даты

2015-12-10Публикация

2014-04-18Подача