Изобретение относится к ракетным двигателям жидкого топлива.
Известны ракетные двигатели, см. например мой «Бескорпусный двигатель с самоподачей», пат. №2431052. Все существующие химические ракетные двигатели используют принцип высокотемпературного нагрева газа или газо-пылевого рабочего тела (пыль - это твердые фракции разложившегося твердого ракетного топлива). Делается это для того, чтобы повысить скорость истечения рабочего тела из реактивного сопла. Эта скорость определяется, во-первых, скоростью звука в газе и, во-вторых, степенью расширения газа в расширяющемся сверхзвуковом реактивном сопле, и достигает в лучших двигателях 4000 м/сек. Причем детали двигателя работают в очень напряженном тепловом режиме, даже с учетом их охлаждения.
Между тем скорость звука в водороде даже при нормальных температуре и давлении 1330 м/сек. А если еще и немного повысить температуру водорода, то скорость звука в нем и скорость истечения его из сопла резко возрастут. Например, водород с температурой всего 650 градусов С (это ниже температуры его воспламенения) будет иметь скорость звука 2360 м/сек, и сможет в реактивном сопле разогнаться сам и разогнать пылевые частицы до скорости около 4300 м/сек. То есть получится «холодный ракетный двигатель», в котором из-за адиабатического расширения газ на выходе из реактивного сопла может иметь приблизительно температуру окружающей среды.
На этом и основана идея данного изобретения. Цель изобретения - повышение скорости реактивной струи и удельного импульса ракетного двигателя. А также, в некоторых случаях, снижение демаскирующего инфракрасного излучения.
ВАРИАНТ 1. Данный двигатель содержит камеру сгорания (будем ее так называть, хотя процесса «сгорания» в ней не происходит), в которую под давлением подается смесь борана (диборана или тетраборана) и гидразина, или раствор или эмульсия борана в жидком гидразине.
При инициации реакции источником тепла происходит сначала экзотермическое разложение диборана (до 300 градусов С) с выделением тепла 38,5 кДж/моль, после чего выделившийся бор взаимодействует с двумя молекулами аммиака. Пример 1.
В2Н6+N2H4=2BN+5Н2+522,5 кДж/моль
То есть удельное выделение тепла составляет 8,75 кДж/г, что примерно как у большинства твердых ракетных топлив. Приблизительные расчеты показывают, что температура реакции будет при постоянном давлении - 1900 градусов С. Скорость звука в таком водороде будет 3600 м/сек, а скорость реактивной пыле-газовой струи примерно 6400 м/сек. Однако слишком малое количество выделившегося водорода внушает сомнения - сможет ли он разогнать всю первоначальную массу до такой скорости. Проверочный расчет (без учета нагрева компонентов) по закону сохранения энергии показал, что максимальная скорость даже при 100% к.п.д. будет 3830 м/сек. Реально - еще меньше.
Но так как к.п.д. 100% не бывает, то из сказанного следует неожиданный вывод - данному двигателю не нужно расширяющееся сверхзвуковое сопло. Достаточно сужающегося. Желательно, с небольшой цилиндрической частью на выходе, чтобы лучше разогнать пылевые частицы. Отсутствие конфузора реактивного сопла значительно снизит вес двигателя и резко снизит его габариты.
Сравнительно низкая рабочая температура позволит значительно облегчить и упростить конструкцию двигателя. Например, вольфрамовый двигатель может работать без охлаждения, а титановый двигатель должен иметь охлаждение, но будет значительно легче вольфрамового.
Так как выше 1200 градусов бор реагирует с гидразином и получающимся в результате его термического разложения азотом, то вся реакция идет лавинообразно, то есть самостоятельно.
Образование нитрида бора идет интенсивнее в присутствии восстановителя. Таковым может быть выделяющийся водород. Для увеличения скорости реакции желательно присутствие мелкодисперсного угля, сажи, графита или небольшого количества метана (0,0001-1% от массы реагирующих веществ), или их смеси. Метан при температуре выше 1100 градусов С экзотермически (с удельным тепловыделением 4,68 кДж/г) разлагается с выделением двух молекул водорода и углерода в виде сажи, которая будет катализатором реакции образования нитрида бора.
Как видно из реакции, стехиометрическое соотношение диборана и гидразина должно быть 27,67:32,05 и при этом выделится 10,1 г/м водорода. В реальности из-за разности скоростей реакций возможны отклонения в ту или иную сторону до 10%. То есть стехиометрическое соотношение в процентах 46,33:53,67, и при этом выделится 16,9% водорода по отношению к исходной массе.
Чтобы такой двигатель запустился, ему необходим начальный источник тепла. Им может быть установленная на пусковой установке горелка или пиротехническая шашка, которая направлена внутрь камеры сгорания. В течение некоторого времени она прогревает камеру, а затем, после подачи компонентов топлива (будем его так называть, хотя оно не «горит»), инициирует начало их реакции.
Более интересен вариант, в котором шашка быстрогорящего твердого ракетного топлива установлена в самой камере сгорания - по центру и/или на стенках ее. Такая шашка при правильном расчете ее мощности сразу начинает двигать ракету, прогревает камеру сгорания и в конце работы (примерно на 25-10% мощности) инициирует реакцию реагентов топлива. Возможно плавное замещение производительности шашки плавной подачей топлива в камеру сгорания. Время работы такой шашки невелико - секунды или даже доли секунды. Так как желательно прогреть стенки камеры сгорания, то если шашек две - в центре и по краям камеры сгорания, то центральная шашка должна работать несколько дольше, чтобы прогреть стенки, открывшиеся после полного выгорания боковой шашки.
ВАРИАНТ 2. Для повышения удельного тепловыделения двигатель может быть скомбинирован с классическим ракетным двигателем, жидкостным или твердотопливным. То есть такой двигатель содержит камеру сгорания или корпус с соплом, работает на жидком или твердом ракетном топливе и отличается тем, что в камеру сгорания или в корпус твердотопливного ракетного двигателя дополнительно подается выхлоп двигателя, работающего на диборане или тетраборане и гидразине.
В результате горения обычного (окислительно-восстановительного) ракетного топлива и работы водородного двигателя получается газо-пылевая смесь, в которой скорость звука будет ниже, чем водороде, но выше, чем в обычных ракетных газах. Суммарный импульс такого двигателя может оказаться и выше чисто водородного двигателя, и выше окислительно-восстановительного двигателя (требуется серия экспериментов). Но, даже если импульс окажется примерно одинаковым, такой двигатель продолжает сохранять преимущество низкой температуры процесса, то есть будет иметь пониженную инфракрасную заметность и низкую тепловую напряженность конструкции двигателя, то есть ее малый вес и отсутствие охлаждения.
Пример 2. В классический жидкостный ракетный двигатель (например, кислородно-керосиновый) дополнительно подается выхлоп двигателя по варианту 1, в количестве 1:1. Работает двигатель как обычно.
название | год | авторы | номер документа |
---|---|---|---|
РАКЕТНЫЙ ДВИГАТЕЛЬ СТАРОВЕРОВА - 2 /ВАРИАНТЫ/ | 2012 |
|
RU2570911C2 |
РАКЕТНЫЙ ДВИГАТЕЛЬ СТАРОВЕРОВА - 3 (ВАРИАНТЫ) | 2012 |
|
RU2482313C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ СТАРОВЕРОВА-6 /ВАРИАНТЫ/ | 2012 |
|
RU2570913C2 |
РАКЕТНОЕ ТОПЛИВО СТАРОВЕРОВА - 6 | 2014 |
|
RU2570010C2 |
РАКЕТНОЕ ТОПЛИВО СТАРОВЕРОВА - 3 /ВАРИАНТЫ/ | 2014 |
|
RU2570012C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ СТАРОВЕРОВА (ВАРИАНТЫ) | 2012 |
|
RU2544104C2 |
РАКЕТНОЕ ТОПЛИВО /ВАРИАНТЫ/ | 2014 |
|
RU2582712C2 |
РАКЕТНЫЙ ДВИГАТЕЛЬ СТАРОВЕРОВА (ВАРИАНТЫ) | 2012 |
|
RU2601820C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ СТАРОВЕРОВА - 4 /ВАРИАНТЫ/ | 2012 |
|
RU2586211C2 |
РАКЕТНЫЙ ДВИГАТЕЛЬ СТАРОВЕРОВА - 5 /ВАРИАНТЫ/ | 2012 |
|
RU2586442C2 |
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине. Компоненты подаются в следующем соотношении: диборан 46,33±10%, гидразин 53,67±10%. В камеру сгорания дополнительно подается 0,0001-1% от массы реагирующих веществ мелкодисперсного угля и/или сажи, и/или графита, и/или метана. В другом варианте ракетный двигатель содержит камеру сгорания или корпус с соплом, работающий на жидком или твердом топливе. В камеру сгорания или в корпус дополнительно подается выхлоп двигателя, работающего на диборане или тетраборане и гидразине. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 2 з.п. ф-лы.
1. Ракетный двигатель, содержащий камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине, отличающийся тем, что в него подаются компоненты в следующем соотношении: диборан - 46,33 + -10%, гидразин - 53,67 + -10%, причем в камеру сгорания подается 0,0001-1% от массы реагирующих веществ мелкодисперсного угля и/или сажи, и/или графита, и/или метана.
2. Двигатель по п. 1, отличающийся тем, что в камеру сгорания направлена горелка или пиротехническая шашка, установленная на пусковой установке.
3. Двигатель по п. 1, отличающийся тем, что в центре и/или по краям камеры сгорания установлена шашка твердого ракетного топлива.
4. Ракетный двигатель, содержащий камеру сгорания или корпус с соплом, работающий на жидком или твердом ракетном топливе и отличающийся тем, что в камеру сгорания или в корпус твердотопливного ракетного двигателя дополнительно подается выхлоп двигателя, работающего на диборане или тетраборане и гидразине.
Авторы
Даты
2015-12-20—Публикация
2012-06-20—Подача