Изобретение относится к области вихревых энергетических установок, а более конкретно касается создания вихревых энергетических установок, осуществляющих преобразование энергии восходящего потока совместно с энергией набегающих воздушных потоков.
Известна вихревая ветроустановка, в которой набегающий поток воздуха закручивается и ускоряется с помощью профилированных входных каналов, образованных спиралеобразными направляющими перегородками (Авторское свидетельство СССР N 1657723, МПК F03D 3/04, опубл. 23.06.1991). При этом кинетическая энергия воздушного потока преобразуется в энергию вихря, которая преобразуется ветроколесом в механическую, а затем в электрическую энергию. Для повышения эффективности ветроустановки воздушный поток с помощью криволинейных направляющих преобразуется в вихреобразные закрученные потоки (Патент РФ N 2002981, МПК F15D 1/00).
Наиболее близким аналогом заявленного изобретения является (Патент RU №2093702 С1, МПК F03D 3/04, опубл. 20.01.1997) вихревая ветроустановка, содержащая вытяжное устройство, корпус, направляющий аппарат, выполненный в виде коаксиально установленных в корпусе полых элементов в форме усеченных гиперболоидов вращения, с разделяющими вертикальными перегородками, изогнутыми по спирали, и ветроколесо, выполненное в форме тела вращения с жесткими профилированными лопастями и установленное над вытяжным цилиндрическим каналом, образованным внутренними торцами вертикальных профилированных перегородок, в основании нижнего направляющего аппарата выполнен вертикальный осесимметричный канал, в котором установлена турбина - преобразователь энергии с электрогенератором. Вертикальный осесимметричный канал используется для эжекции в корпус дополнительного потока воздуха. В основании нижнего направляющего аппарата также выполнены осесимметричные отверстия для использования восходящих тепловых потоков.
Для увеличения энергетической эффективности ветроустановки вытяжное устройство снабжено аэродинамическим ускорителем. Ветроустановка выполнена модульной конструкции с увеличением проходного сечения и расходов воздушных потоков через каждый последующий модуль по высоте установки.
Устройство вихревой ветроустановки снабжено системой автоматического управления, регулирующей сечение входных каналов направляющих аппаратов.
Недостатком описанной вихревой ветроустановки, принятой за прототип изобретения, является то, что она предназначена только для преобразования энергии набегающего воздушного потока.
Задачей вихревой газо-ветроэнергетической установки является выработка электроэнергии с использованием кинетической энергии потоков отходящих газов и, как следствие, эффективное использование набегающего ветрового потока. А также увеличение электрической мощности за счет эжекционного повышения расхода газо-воздушного потока, даже в случаях нулевой скорости ветра, увеличение расхода газовоздушной смеси и электрической мощности за счет применения аэродинамического ускорителя - трубы Вентури, самоустанавливающейся по направлению ветрового потока.
Поставленная задача решается за счет того, что вихревая газо-ветроэнергетическая установка, содержащая корпус гиперболической формы, вытяжное устройство, турбину, электрогенератор, входной направляющий аппарат с воздушными каналами, разделенными вертикальными перегородками и выполненными в виде гиперболоидов вращения, осесимметричный канал в основании входного направляющего аппарата с воздушными каналами, турбина соединена общим валом с ротором электрогенератора, согласно изобретению осесимметричный канал снабжен завихривающими направляющими, в верхней части корпуса расположен обтекатель с размещенным в нем электрогенератором и заключенным в кожух, в кольцевом газовоздушном зазоре между корпусом и кожухом обтекателя установлены лопатки осевого направляющего аппарата и одноступенчатая осевая турбина, вытяжное устройство выполнено в виде аэродинамического ускорителя - трубы Вентури, установленной через подшипник на корпусе установки и снабженной направляющим устройством воздушного потока.
На фиг.1 изображена схема вихревой газо-ветроэнергетической установки. Здесь:
1 - выходной канал с завихривающими направляющими,
2 - входной направляющий аппарат с воздушными каналами, разделенными вертикальными перегородками, выполненными в виде гиперболоидов вращения и изогнутыми по спирали;
3 - корпус гиперболической формы;
4 - кожух обтекателя,
5 - электрогенератор;
6 - лопатки осевого направляющего аппарата;
7 - одноступенчатая осевая турбина;
8 - подшипник;
9 - труба Вентури;
10 - направляющее устройство.
На фиг.2 изображен поперечный разрез по А-А входного направляющего аппарата с воздушными каналами. Здесь 11 - вертикальные перегородки, выполненные в виде гиперболоидов вращения и изогнутые по спирали.
Вихревая газо-ветроэнергетическая установка работает следующим образом. Поток газов (например, отработавший в газотурбинной установке газоперекачивающего агрегата) с температурой до 450°C выходит через выходной канал 1 с завихривающими направляющими и поступает в нижнюю осевую часть корпуса 3 гиперболической формы. Поток газов вследствие их высокой температуры имеет значительно меньшую плотность, чем атмосферный воздух, за счет чего в нижней осевой части корпуса вследствие самотяги возникает разрежение. Величина разрежения дополнительно возрастает за счет тороидального эффекта, вызываемого закруткой воздушного потока, входящего в корпус 3, во входном направляющем аппарате 2 с воздушными каналами, разделенными вертикальными перегородками, выполненными в виде гиперболоидов вращения и изогнутыми по спирали. Тороидально закрученная по высоте корпуса 3 газо-воздушная смесь входит в лопатки осевого направляющего аппарата 6 через кольцевой зазор, образованный корпусом 3 и кожухом обтекателя 4, и поступает в одноступенчатую осевую турбину 7, совершая полезную работу и приводя во вращение через общий вал ротор электрогенератора 5. Направляющее устройство 10 обеспечивает поворот с помощью подшипника 8 аэродинамического ускорителя потока - трубы Вентури 9 относительно неподвижного корпуса 3 и устанавливает ее по ходу набегающего воздушного потока. Ускоряясь в трубе Вентури, воздушный поток создает разрежение в ее узком сечении, за счет чего увеличивается полезная работа осевой одноступенчатой турбины 7 и выработка электроэнергии в электрогенераторе 5. В узком сечении трубы Вентури 9 происходит смешение воздушного потока, входящего через ее входное торцевое сечение, и газо-воздушного потока, поступающего в узкое сечение трубы Вентури 9 из верхней части корпуса 3. Объединенный газовоздушный поток через выходной торец трубы Вентури 9 выводится в атмосферу.
Применение вихревых газо-ветроэнергетических установок позволяет:
- эффективно использовать набегающий ветровой поток для выработки электроэнергии;
- увеличить электрическую мощность установки за счет эжекционного повышения расхода газо-воздушного потока, даже в случаях нулевой скорости ветра;
- увеличить расход газовоздушной смеси и электрическую мощность установки за счет применения аэродинамического ускорителя - трубы Вентури, самоустанавливающейся по направлению ветрового потока.
название | год | авторы | номер документа |
---|---|---|---|
ВИХРЕВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ГАЗОПЕРЕКАЧИВАЮЩЕГО АГРЕГАТА КОМПРЕССОРНОЙ СТАНЦИИ | 2013 |
|
RU2544895C1 |
ВИХРЕВАЯ ВЕТРОУСТАНОВКА | 1996 |
|
RU2093702C1 |
ВИХРЕВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ГАЗОПЕРЕКАЧИВАЮЩЕГО АГРЕГАТА КОМПРЕССОРНОЙ СТАНЦИИ | 2021 |
|
RU2780394C1 |
Ветроустановка с вихревыми аэродинамическими преобразователями воздушного потока | 2016 |
|
RU2639822C2 |
НАПОРНО-ВАКУУМНАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2022 |
|
RU2805400C1 |
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2016 |
|
RU2644000C1 |
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2006 |
|
RU2331791C2 |
Вихревой эжектор | 2019 |
|
RU2703119C1 |
ВЕТРОУСТАНОВКА (ВАРИАНТЫ) | 2007 |
|
RU2341682C1 |
ГИРЛЯНДНАЯ ВЕТРОЭНЕРГЕТИЧЕСКАЯ СТАНЦИЯ | 2011 |
|
RU2466296C1 |
Изобретение относится к области вихревых энергетических установок. Вихревая газо-ветроэнергетическая установка содержит корпус гиперболической формы, вытяжное устройство, одноступенчатую осевую турбину, электрогенератор, входной направляющий аппарат с воздушными каналами, осесимметричный канал в основании входного направляющего аппарата. Воздушные каналы разделены вертикальными перегородками и выполнены в виде гиперболоидов вращения. Турбина соединена общим валом с ротором электрогенератора. Осесимметричный канал соединен с выхлопным газоходом газотурбинной установки и снабжен завихривающими направляющими. В верхней части корпуса расположен кожух обтекателя с размещенным в нем электрогенератором. В кольцевом газовоздушном зазоре между корпусом и кожухом обтекателя установлены лопатки осевого направляющего аппарата и одноступенчатая осевая турбина. Вытяжное устройство выполнено в виде трубы Вентури, установленной через подшипник на корпусе установки и снабженной направляющим устройством воздушного потока. Изобретение позволяет вырабатывать электроэнергию с использованием кинетической энергии потоков отходящих газов и набегающего ветрового потока. 2 ил.
Вихревая газо-ветроэнергетическая установка, содержащая корпус гиперболической формы, вытяжное устройство, турбину, электрогенератор, направляющий аппарат с воздушными каналами, разделенными вертикальными перегородками и выполненными в виде гиперболоидов вращения, осесимметричный канал в основании направляющего аппарата с воздушными каналами, турбина соединена общим валом с ротором электрогенератора, отличающаяся тем, что осесимметричный канал снабжен завихривающими направляющими, в верхней части корпуса расположен обтекатель с размещенным в нем электрогенератором и заключенным в кожух, в кольцевом газовоздушном зазоре между корпусом и кожухом обтекателя установлены лопатки осевого направляющего аппарата и одноступенчатая осевая турбина, вытяжное устройство выполнено в виде аэродинамического ускорителя - трубы Вентури, установленной через подшипник на корпусе установки и снабженной направляющим устройством воздушного потока.
ВИХРЕВАЯ ВЕТРОУСТАНОВКА | 1996 |
|
RU2093702C1 |
РЕГУЛИРУЮЩЕЕ ПРИСПОСОБЛЕНИЕ К ВЕТРЯНОМУ ДВИГАТЕЛЮ | 1926 |
|
SU3891A1 |
Устройство для определения воздухопроницаемости листовых материалов | 1946 |
|
SU76252A1 |
CN 201730747 U 02.02.2011 | |||
US 4508973 A 02.04.1985. |
Авторы
Даты
2016-01-20—Публикация
2013-11-19—Подача