СПОСОБ ЗАЩИТЫ УСТАНОВКИ ЭЛЕКТРОЦЕНТРОБЕЖНОГО ГЛУБИННОГО НАСОСА Российский патент 2016 года по МПК G01N9/26 

Описание патента на изобретение RU2573613C1

Заявляемое изобретение относится к теории и практике эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтедобывающей промышленности.

Установки электроцентробежных насосов (УЭЦН) во многих нефтедобывающих предприятиях обеспечивают формирование основной или весомой доли добываемой нефти, поэтому безопасности их эксплуатации уделяется должное внимание. В настоящее время зачастую УЭЦН комплектуется глубинной телеметрией в виде термоманометрической системы ТМС (стр. 276 учебника: Скважинная добыча нефти / М.М. Кабиров, Ш.А. Гафаров. - СПб.: ООО «Недра», 2010. - 416 с.). ТМС отключает погружной электродвигатель (ПЭД) от электропитания при достижении давления среды вокруг ПЭД ниже заданного минимального значения (стр. 22 учебного пособия: Зейгман Ю.В., Гумеров О.А. Эффективность эксплуатации установок электроцентробежных насосов в скважинах. - Уфа.: ООО «Монография», 2006. - 88 с.).

В нефтедобывающей скважине межтрубное пространство (МП) между колонной лифтовых труб и обсадной колонной заполнено, как правило, двумя средами: газовой (попутный нефтяной газ) и жидкостной с определенным содержанием растворенного газа. Исходя из этого существующего положения давление среды вокруг ПЭД является суммой двух составляющих: давления на газожидкостном разделе РГЖР и давления столба жидкости с растворенным газом от газожидкостного раздела до погружного электродвигателя:

Существующая система защиты погружного электродвигателя и глубинного ЭЦН основана на измерении давления в зоне ПЭД, которое согласно формуле (1) может быть создано тремя способами.

1. Над ПЭД в межтрубном пространстве находится скважинная продукция в виде нефти или эмульсии с определенным содержанием растворенного и свободного газа. Над этим столбом жидкости находится попутный нефтяной газ под определенным давлением РГЖР.

2. Давление попутного нефтяного газа (ПНГ) может отсутствовать в скважине: РГЖР=0. Такую ситуацию можно видеть при открытой задвижке межтрубного пространства или при постоянной откачке ПНГ из межтрубного пространства с помощью устьевого компрессора.

3. В определенных условиях высота столба жидкости в межтрубном пространстве может снизиться до минимального значения, равного расстоянию от входа в ЭЦН до датчиков термоманометрической системы. Такая ситуация ведет к попаданию свободного газа на рабочие турбинки ЭЦН и срыву подачи скважинной продукции глубинным насосом. В этой неблагоприятной ситуации давление в зоне ТМС может быть выше того минимального значения давления Рмин, при котором отключается погружной электродвигатель. Такое возможно при высоком давлении попутного нефтяного газа в межтрубном пространстве.

Рассмотрим пример. На скважине с УЭЦН и ТМС установили следующее значение минимально допустимого давления Рмин=2,0 МПа. В определенный момент времени ЭЦН откачивает скважинную продукцию в жидкой фазе из межтрубного пространства, и динамический уровень спускается до приема электроцентробежного насоса. Возникает аварийная ситуация с последующим разрушением ПЭД или ЭЦН. При этом датчик давления ТМС, расположенный в нижней части ПЭД, показывает давление выше, чем Рмин, и ПЭД не отключается от электроснабжения. Такая картина возможна в скважинах с высоким давлением попутного газа в межтрубном пространстве.

Второй сопутствующей причиной существующего несовершенства в защите ПЭД является то, что датчик давления расположен не на приеме электроцентробежного насоса, а значительно ниже - в самой нижней части ПЭД. Это ведет к тому, что датчик давления будет всегда показывать чуть большее давление, чем давление на приеме ЭЦН, внося неопределенность в оценку давления в зоне входа скважинной жидкости в электроцентробежный насос.

Технической задачей изобретения является повышение эффективности защиты установки электроцентробежного насоса путем исключения возможности попадания на прием насоса попутного нефтяного газа при снижении динамического уровня жидкости (газожидкостного раздела) до приема в ЭЦН и ниже.

Техническая задача по изобретению выполняется тем, что в способе защиты установки электроцентробежного глубинного насоса, заключающемся в отключении электропитания погружного электродвигателя установки при показании датчика глубинной телеметрии, равном или ниже определенной заданной величины, один датчик давления устанавливают на приеме электроцентробежного насоса (ЭЦН), второй датчик давления устанавливают в межтрубном пространстве на устье скважины, величину Ρмин (давление датчика, при котором и ниже которого отключается ПЭД) станция управления скважиной рассчитывает в постоянном режиме времени как сумму двух давлений: давления столба жидкости над датчиком Ргидро и давления газа над газожидкостным разделом (динамическим уровнем) РГЖР:

P м и н = Р г и д р о + Р Г Ж Р ,            (2)

причем величина РГЖР определяется расчетным путем исходя их показаний второго - устьевого датчика давления, а давление Ргидро задается постоянной величиной исходя из скважинных условий и характеристик глубинного насоса.

Давление Ргидро определяют исходя из паспортных данных УЭЦН, физических свойств жидкости с растворенным газом между ЭЦН и Ндин (плотность и газосодержание), а также возможности той ситуации, когда РГЖР=0 при открытой задвижке МП скважины.

Давление на газожидкостном разделе в межтрубном пространстве (МП) скважины зависит от давления газа МП на устье скважины и свойств попутного нефтяного газа, определяется по экспоненциальной формуле Лапласа-Бабинэ (стр. 134 источнике: Коротаев Ю.П., Ширковский А.И. Добыча, транспорт и подземное хранение газа. Учеб. для вузов. - М.: Недра, 1984. - 487 с.) в зависимости от Руст - давления в МП скважины на устье. Это давление (Руст) измеряется датчиком.

Способ реализуется на нефтедобывающей скважине, оборудованной УЭЦН и имеющей в своем подземном оборудовании стационарные датчики давления, установленные на устье скважины и на приеме глубинного электроцентробежного насоса. Схема расположения датчиков приведена на чертеже, где цифрами обозначены: 1 - обсадная колонна скважины, 2 - колонна лифтовых труб, 3 - электроцентробежный насос установки, 4 - датчик давления на входе в насос, 5 - гидрозащита УЭЦН, 6 - погружной электродвигатель, 7 - линии электропитания ПЭД и обратной связи со станцией управления скважиной 8, 9 - входные отверстия в ЭЦН, 10 - датчик давления в межтрубном пространстве на устье скважины.

С помощью приведенной схемы сравним работу двух систем защиты УЭЦН: предлагаемой и существующей сегодня в нефтегазодобывающих предприятиях в двух ситуациях: при наличии высокого давления газа в МП скважины и при его отсутствии.

Рассмотрим общие исходные данные для вертикальной скважины:

- глубина приема электроцентробежного насоса НЭЦН=1000 м;

- глубина нижней части погружного электродвигателя НПЭД=1016 м;

- плотность газожидкостного состава (нефти) между ПЭД и ЭЦН ρж=600 кг/м3;

- средняя температура в зоне ЭЦН равна Тср=293°K;

- среднее значение коэффициента сверхсжимаемости газа zcp=1,0;

- инженерно-техническим персоналом устанавливают Ргидро=0,60 МПа;

- давление газа в межтрубном пространстве на устье скважины принимает два значения Руст=0,9 МПа (ситуация 1) и Руст=0 МПа (ситуация 2).

Давление газа в межтрубном пространстве РГЖР при достижении динамического уровня приема в ЭЦН, то есть при НдинЭЦН, находится по формуле Лапласа-Бабинэ:

Предлагаемая система защиты УЭЦН. Один датчик давления 4 находится на входе в ЭЦН. Другой датчик давления 10 находится в МП на устье скважины.

Ситуация первая - в скважине попутный газ высокого давления и одновременно с этим динамический уровень жидкости в МП приближается к приему ЭЦН.

Согласно изобретению РмингидроГЖР=0,6+1,0=1,6 МПа. При снижении давления на датчике, расположенном на входе в ЭЦН, до Рмин погружной электродвигатель останавливает свою работу. Найдем высоту столба жидкости над входом в ЭЦН при остановке ПЭД из формулы (2): РгидроминГЖР=1,6-1,0=0,6 МПа. Такое давление соответствует следующей высоте столба жидкости над входом в ЭЦН: ΔН=НЭЦНдингидро/(ρж·g)=0,6МПа/(600 кг/м3·9,8 м/c2)=102 м. Такая высота жидкости исключает попадание свободного газа на прием ЭЦН с последующим негативным воздействием.

Ситуация вторая - в скважине понижаются до нуля давление газа в МП и одновременно с этим динамический уровень жидкости в МП приближается к приему ЭЦН. Согласно изобретению РмингидроГЖР=0,6+0=0,6 МПа. Над входом в ЭЦН опять находится столб жидкости высотой 102 м. Глубинная установка надежно защищена от свободного газа.

Существующая система защиты УЭЦН. Имеется только один датчик давления, и он находится в нижней части погружного электродвигателя на глубине НПЭД=1016 м. Погружной электродвигатель отключается при Рмингидро, то есть составляющая РГЖР в равенстве (2) отсутствует. Согласно общим условиям параметр Ргидро=0,6 МПа.

Ситуация первая - в скважине попутный газ высокого давления и одновременно с этим динамический уровень жидкости в МП приближается к приему ЭЦН. В момент снижения динамического уровня до приема ЭЦН датчик давления будет фиксировать давление газа в МП: РПЭДГЖР=1,0 МПа. Это давление выше, чем Рмингидро=0,6 МПа, поэтому ПЭД не отключается защитой и продолжает работать, а в ЭЦН поступает в свободном состоянии попутный нефтяной газ. Это ведет к перегреву и вибрации ЭЦН и быстрому выходу из строя.

Ситуация вторая - в скважине давление газа в МП понижается до нуля, и одновременно с этим динамический уровень жидкости в МП приближается к приему ЭЦН. При давлении датчика ПЭД, равном Рмин: РПЭДмингидро=0,6 МПа, станция управления отключает ПЭД от электропитания. В момент отключения ПЭД давление на входе в ЭЦН будет меньше этой регламентированной величины Рмин на величину гидростатического давления между входом в ЭЦН и нижней частью ПЭД (место установки датчика):

РЭЦНПЭДж·g·(НПЭДЭЦН)=0,6 МПа - 600 кг/м3·9,8 м/с2·(1016-1000)м=0,506 МПа.

Представленные выше расчеты приведем в более удобном табличном виде:

Анализ таблицы показывает, что в обеих ситуациях, которые периодически возникают в нефтедобывающих скважинах, предложенный способ защиты работы УЭЦН лучше, чем существующий. По изобретению достигается технический результат, а именно исключается попадание на прием ЭЦН попутного нефтяного газа при снижении динамического уровня жидкости (газожидкостного раздела) до приема в насос и ниже. Впервые предложено учитывать давление, создаваемое газовой составляющей межтрубного пространства скважины. Предложено также перенести датчик давления с нижней части ПЭД на вход в ЭЦН, а давление газа на устье скважины учитывать с помощью второго стационарного датчика. Все эти новшества, соответствуют критериям «новизна» и «существенное отличие».

Экономическая эффективность от внедрения изобретения образуется за счет более длительной и безаварийной эксплуатации скважин с УЭЦН.

Похожие патенты RU2573613C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ЖИДКОСТИ В СКВАЖИНЕ 2014
  • Денисламов Ильдар Зафирович
  • Еникеев Руслан Марсельевич
  • Набиев Азамат Альбертович
  • Мифтахетдинов Раиль Ранисович
  • Саетов Альберт Рафагатович
RU2544882C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО УРОВНЯ ЖИДКОСТИ В СКВАЖИНЕ 2014
  • Денисламов Ильдар Зафирович
  • Еникеев Руслан Марсельевич
RU2562628C1
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЖИДКОСТИ В СКВАЖИНЕ 2014
  • Денисламов Ильдар Зафирович
  • Еникеев Руслан Марсельевич
RU2559979C1
СПОСОБ ПРОМЫВКИ СКВАЖИННОГО ПОГРУЖНОГО ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА РЕАГЕНТОМ 2011
  • Денисламов Ильдар Зафирович
  • Галимов Артур Маратович
  • Еникеев Руслан Марсельевич
RU2475628C1
Способ определения объема отложений в колонне подъемных труб скважины 2015
  • Зейгман Юрий Вениаминович
  • Денисламов Ильдар Зафирович
  • Еникеев Руслан Марсельевич
RU2610948C1
СПОСОБ ОЦЕНКИ СОДЕРЖАНИЯ СВОБОДНОГО ГАЗА НА ПРИЕМЕ СКВАЖИННОГО НАСОСА 2017
  • Денисламов Ильдар Зафирович
  • Зейгман Юрий Вениаминович
  • Галимов Артур Маратович
  • Исаев Ильфир Зуфарович
  • Денисламова Алия Ильдаровна
RU2667183C1
Способ разработки участка нефтяного пласта 2016
  • Денисламов Ильдар Зафирович
  • Ситдикова Динара Файрузовна
  • Ярмухаметов Руслан Радикович
  • Муслимов Артур Рустемович
RU2622418C1
СПОСОБ ПОДАЧИ РАСТВОРИТЕЛЯ АСПО В СКВАЖИНУ 2020
  • Денисламов Ильдар Зафирович
  • Давлетшин Рузель Аглямович
  • Портнов Андрей Евгеньевич
  • Хакимов Джамиль Рустемович
RU2750500C1
СПОСОБ ОЦЕНКИ ОБВОДНЕННОСТИ ПРОДУКЦИИ НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ 2015
  • Денисламов Ильдар Зафирович
  • Исаев Ильфир Зуфарович
  • Ишбаев Рустам Рауилевич
RU2610941C1
СПОСОБ ПРОМЫВКИ СКВАЖИННОГО ГЛУБИННОГО ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА 2012
  • Денисламов Ильдар Зафирович
  • Галимов Артур Маратович
  • Ибрагимов Шамиль Мирвалеевич
RU2513889C1

Реферат патента 2016 года СПОСОБ ЗАЩИТЫ УСТАНОВКИ ЭЛЕКТРОЦЕНТРОБЕЖНОГО ГЛУБИННОГО НАСОСА

Изобретение относится к теории и практике эксплуатации нефтедобывающих скважин с помощью установок электроцентробежных насосов (УЭЦН) и может использоваться в нефтедобывающей промышленности. Техническим результатом изобретения является повышение эффективности защиты установки электроцентробежного насоса. Способ защиты установки электроцентробежного глубинного насоса заключается в отключении электропитания погружного электродвигателя установки при показании датчика глубинной телеметрии, равном или ниже определенной заданной величины. Один датчик давления устанавливают на приеме электроцентробежного насоса (ЭЦН), второй датчик давления устанавливают в межтрубном пространстве на устье скважины. Величину Pмин - давления датчика, при котором и ниже которого отключается работа ПЭД, рассчитывают в постоянном режиме времени как сумму двух давлений: давления столба жидкости над датчиком Pгидро и давления газа над газожидкостным разделом (динамическим уровнем) PГЖР: Pмин=Pгидро+PГЖР, причем величина PГЖР определяется расчетным путем исходя их показаний второго - устьевого датчика давления, а давление Pгидро задается постоянной величиной исходя из скважинных условий и характеристик глубинного насоса. 1ил., 1 табл.

Формула изобретения RU 2 573 613 C1

Способ защиты установки электроцентробежного глубинного насоса, заключающийся в отключении электропитания погружного электродвигателя (ПЭД) установки при показании датчика глубинной телеметрии, равном или ниже определенной заданной величины, отличающийся тем, что один датчик давления устанавливают на приеме электроцентробежного насоса (ЭЦН), второй датчик давления устанавливают в межтрубном пространстве на устье скважины, величину Pмин - давления датчика, при котором и ниже которого отключается работа ПЭД, станция управления скважиной рассчитывает в постоянном режиме времени как сумму двух давлений: давления столба жидкости над датчиком Pгидро и давления газа над газожидкостным разделом (динамическим уровнем) PГЖР:
Pмин=Pгидро+PГЖР,
причем величина PГЖР определяется расчетным путем исходя их показаний второго - устьевого датчика давления, а давление Pгидро задается постоянной величиной исходя из скважинных условий и характеристик глубинного насоса.

Документы, цитированные в отчете о поиске Патент 2016 года RU2573613C1

Зейгман Ю.В., Гумеров О.А
Эффективность эксплуатации установок электроцентробежных насосов в скважинах
- Уфа.: ООО "Монография", 2006
Шланговое соединение 0
  • Борисов С.С.
SU88A1
СПОСОБ И УСТРОЙСТВО ДЛЯ МОНИТОРИНГА ЭЦН 2009
  • Бартенев Андрей Михайлович
  • Данов Владимир Крассимеров
  • Громолль Бернд
  • Полихов Степан Александрович
  • Свиридов Евгений Михайлович
RU2519537C2
Устройство для тепловой защиты погружного электродвигателя 1990
  • Кричке Владимир Оскарович
  • Золотов Владимир Петрович
  • Семенов Владимир Семенович
  • Алимпиев Артрурий Васильевич
SU1741219A1
US 8811118 В2, 19.08.2014.

RU 2 573 613 C1

Авторы

Денисламов Ильдар Зафирович

Еникеев Руслан Марсельевич

Бисенова Айнура Амангельдыевна

Даты

2016-01-20Публикация

2014-11-12Подача