СПОСОБ ИЗМЕРЕНИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ Российский патент 2016 года по МПК G01R19/30 

Описание патента на изобретение RU2575139C1

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для измерения токов короткого замыкания в электроустановках.

Известен способ измерения тока короткого замыкания [Хомерике O.K. Полупроводниковые преобразователи магнитного поля. - М.: Энергоатомиздат, 1986. - С. 7-19] путем фиксации напряжения на выходе датчика Холла, установленного вблизи проводника. По напряжению определяют величину магнитной индукции, создавшей его, а по последней - величину тока в проводнике.

Однако величина контролируемого напряжения незначительна и зависит от температуры окружающей среды, что требует дополнительного усиления сигнала и компенсации температурных погрешностей. В конечном итоге это ведет к снижению точности измерения тока.

Наиболее близким к предлагаемому является способ измерения тока короткого замыкания [KZ 21350 A4, МПК G01R 19/30 (2006.01), опубл. 15.06.2009], при котором фиксируют время t1 между моментами замыкания и размыкания контактов первого геркона, время t1, 2 между замыканием контактов первого и второго герконов и время t3 между моментами замыкания и размыкания контактов второго геркона. Первый и второй герконы располагают в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания IСР1 и IСР2 в проводнике и размыкали контакты при токах возврата IВ1 и IВ2. Второй геркон настраивают так, чтобы он срабатывал при токах срабатывания IСP2>ICP1 и возвращался при токах возврата IB2>IB1. Составляют уравнения для ICP1, IСР2, IB1 и IВ2 по формуле:

где Im - амплитуда периодической составляющей измеряемого тока;

t - время в любой момент времени;

φΗ - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока короткого замыкания;

ima - начальное значение апериодической составляющей измеряемого тока;

ω - угловая частота тока;

Та - постоянная времени,

используя t1, t1, 2, t3. Находят амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima из системы четырех составленных уравнений. По указанной формуле определяют полный ток короткого замыкания Iпол в любой момент времени.

Недостатком этого способа является низкое быстродействие релейной защиты, так для определения тока короткого замыкания нужно время 10 мс.

Задачей изобретения является повышение быстродействия релейной защиты.

Это достигается тем, что способ измерения тока короткого замыкания, так же как и в прототипе, заключается в том, что фиксируют время t1, 2 между замыканием контактов первого и второго герконов, которые расположены в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания ICP1, IСР2 в проводнике, второй геркон настраивают так, чтобы он срабатывал при токах срабатывания IСP2>ICP1, составляют уравнения для ICP1, IСР2, используя t1, 2, и определяют амплитуду полного тока короткого замыкания по формуле:

где Im - амплитуда периодической составляющей измеряемого тока;

t - время в любой момент времени;

φΗ - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока короткого замыкания;

ima - начальное значение апериодической составляющей измеряемого тока;

ω - угловая частота тока;

Та - постоянная времени.

Согласно изобретению четыре геркона устанавливают на безопасных расстояниях h1, h2, h3, h4 от проводника. Угол между перпендикулярной линией продольной оси проводника и продольной осью первого геркона, второго, третьего и четвертого герконов составляет 90°. Настраивают герконы так, чтобы они срабатывали при токах срабатывания IСP4>ICP3>ICP2. Дополнительно измеряют время между замыканием второго и третьего геркона, третьего и четвертого геркона и определяют амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima из выражения:

где t1, 2 - время между замыканием контактов первого и второго герконов;

t2, 3 - время между замыканием контактов второго и третьего герконов;

t3, 4 - время между замыканием контактов третьего и четвертого герконов;

tH - время до замыкания контактов первого геркона;

ICP1 - ток срабатывания первого геркона;

IСР2 - ток срабатывания второго геркона;

IСР3 - ток срабатывания третьего геркона;

IСР4 - ток срабатывания четвертого геркона,

используя которые определяют амплитуду полного тока короткого замыкания Iпол.

Измерение времени между срабатыванием второго и третьего, третьего и четвертого герконов позволяет определить амплитуду тока короткого замыкания за 5 мс, так как срабатывания всех герконов происходит в первую половину полупериода переменного тока. Таким образом, по сравнению с прототипом, повышено быстродействие релейной защиты.

На фиг. 1 показано устройство для реализации предлагаемого способа.

На фиг. 2 представлены зависимости I=f(t), где кривая 1 - полный ток короткого замыкания Iпол, кривая 2 - номинальный ток Iном, кривая 3 - ток апериодической составляющей Iапер, кривая 4 - ток периодической составляющей Iпер.

Предложенный способ измерения тока короткого замыкания может быть реализован с помощью устройства, в котором первый 1, второй 2, третий 3 и четвертый 4 герконы (фиг. 1) с нормально разомкнутыми контактами размещены в магнитном поле проводника 5 с током и подключены к микроконтроллеру 6 (МК).

Могут быть использованы герконы типа МКА-14103 группы А производителя ОАО "Рязанского завода металлокерамических приборов". Микроконтроллер 6 (МК) может быть выполнен на микроконтроллере серии 51 производителя atmel AT89S53.

Способ осуществляют следующим образом.

Первый 1, второй 2, третий 3 и четвертый 4 герконы с нормально разомкнутыми контактами устанавливают вблизи проводника 5 на безопасном расстоянии. Расстояние от проводника 5 до первого 1 геркона h1=0,1 м, расстояние от проводника 5 до второго 2 геркона h2=0,13 м, расстояние от проводника 5 до третьего 3 геркона h3=0,16 м, расстояние от проводника 5 до четвертого 4 геркона h4=0,19 м. Угол между перпендикулярной линией продольной оси проводника 5 и продольной осью первого геркона 1, второго 2, третьего 3 и четвертого 4 герконов составляет 90°. Герконы подобраны так, чтобы токи срабатывания ICP1, IСР2, ICP3, ICP4 первого 1, второго 2, третьего 3 и четвертого 4 герконов соответствовали неравенствам:

IСР1<IСР2<ICP3<IСР4.

В проводнике 5 протекает ток короткого замыкания. При увеличении тока до тока срабатывания IСР1=33,9 А первого 1 геркона (фиг. 2, кривая 1) замыкаются разомкнутые до этого контакты. Это происходит под действием созданного током IСР1 срабатывания магнитного поля напряженностью срабатывания в зазоре между контактами первого 1 геркона, направленной вдоль его продольной оси. Второй 2 геркон замыкает контакты при токе срабатывания ICP2=60,4 А. Третий 3 геркон замыкает контакты при токе срабатывания IСР3=98,8 А. Четвертый 4 геркон замыкает контакты при токе срабатывания IСР4=176,0 А.

При увеличении тока в проводнике 5 до величины тока срабатывания IСР1 (фиг. 2, кривая 2) первый геркон 1 срабатывает, его контакты замыкаются, микроконтроллер 6 (МК) фиксирует значение тока и начинает отчет времени t1, 2 между замыканием контактов первого и второго герконов. Если ток не увеличился до ICP2, тo второй геркон 2 не срабатывает и микроконтроллер 6 (МК) обнуляет все значения.

Но если в проводнике 5 ток увеличивается до тока срабатывания IСР2, то срабатывает второй геркон 2 (фиг. 2, кривая 1). Микроконтроллер 6 (МК) фиксирует срабатывание второго 2 геркона, время между замыканием первого и второго герконов t1, 2=1 мс и начинает отчет времени t2, 3 между замыканием второго и третьего герконов. Когда ток в проводнике 5 увеличивается до тока срабатывания ICP3, то срабатывает третий геркон 3 (фиг. 2, кривая 1). Микроконтроллер 6 (МК) фиксирует срабатывание третьего 3 геркона, промежуток времени между замыканием второго и третьего герконов

t2, 3=0,8 мс и начинает отчет времени t3, 4 между замыканием третьего и четвертого герконов. Далее ток в проводнике 5 увеличивается до тока срабатывания IСР4, срабатывает четвертый геркон 4 (фиг. 2, кривая 1), и фиксируется время между замыканием третьего и четвертого герконов t3,4=1,2 мс.

В микроконтроллере 6 (МК) вычисляют значения Im, tH, φΗ по формулам разложения тока короткого замыкания на апериодическую (фиг. 2, кривая 3) и периодическую составляющие (фиг. 2, кривая 4) [Ульянов С.А. Электромагнитные переходные процессы. - Москва, 1970 г. - С. 58-65.]:

где Im - амплитуда периодической составляющей измеряемого тока;

tH - время до замыкания контактов первого геркона;

φΗ - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока;

ima - начальное значение апериодической составляющей измеряемого тока,

Та - постоянная времени.

Затем определяют полный ток короткого замыкания Iпол для любого момента времени по формуле:

Расчет ведется следующим образом, в выражении (2) второе уравнение делят на первое; раскладывают на

- представлено в виде , при этом сокращается и уравнение принимает вид:

Раскрывают скобки, аргументы, содержащие амплитуду периодической составляющей измеряемого тока Im, переносят в правую часть уравнения, а - в левую. В правой части уравнения (4) аргумент выносят за скобку:

Для третьего и четвертого уравнений системы (2) выполняют аналогичные (4)-(5) операции. В результате получают:

Далее делят уравнение (6) на (5), Im·sin(ωtΗΗ) сокращают, определяют ctg(ωtkΗ):

и находят:

Затем определяют амплитуду периодической составляющей измеряемого тока Im:

Находят значение мгновенной величины периодической составляющей тока IМ в точке Μ (фиг. 2):

и мгновенное значение величины апериодической составляющей тока iN в точке N:

Чтобы найти начальное значение ima апериодической составляющей измеряемого тока в уравнении (10) в момент перехода через ноль периодической составляющей измеряемого тока Im, принимают φΗ=0, тогда ωtH1 и φ1=arcsin(IM/Im), которые подставляют в формулу (11) и определяют:

Принимая данное значение амплитудой апериодического составляющий при переходе полного тока короткого замыкания через ноль при φΗ=0, строят кривую апериодической составляющей измеряемого тока (фиг. 2, кривая 3).

По полученным данным строят кривую полного тока короткого замыкания Iпол (фиг. 2, кривая 1) в любой момент времени по формуле:

Амплитуда полного тока короткого замыкания полученная с использованием предложенного способа IМпол=435 А при заданном значении I′Мпол=412 А. Таким образом, погрешность определения составила

Похожие патенты RU2575139C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ 2014
  • Жантлесова Асемгуль Бейсембаевна
  • Исабекова Бибигуль Бейсембаевна
RU2554282C1
СПОСОБ ИЗМЕРЕНИЯ ТОКА В ПРОВОДНИКЕ С ПОМОЩЬЮ ГЕРКОНОВ 2008
  • Никитин Константин Иванович
  • Горюнов Владимир Николаевич
  • Клецель Марк Яковлевич
  • Токомбаев Мират Тулегенович
  • Майшев Павел Николаевич
RU2397499C2
СПОСОБ ЗАЩИТЫ ПЕЧНОГО ТРАНСФОРМАТОРА С ФАЗАМИ, ВЫПОЛНЕННЫМИ СО СТОРОНЫ НИЗШЕГО НАПРЯЖЕНИЯ В ВИДЕ ГРУППЫ ОТДЕЛЬНЫХ ПРОВОДНИКОВ 2010
  • Горюнов Владимир Николаевич
  • Клецель Марк Яковлевич
  • Майшев Павел Николаевич
  • Новожилов Александр Николаевич
  • Новожилов Тимофей Александрович
RU2422965C1
СПОСОБ ИДЕНТИФИКАЦИИ ПЕРЕМЕННОГО ТОКА В ПРОВОДНИКЕ С ПОМОЩЬЮ ЗАМЫКАЮЩЕГО ГЕРКОНА 2015
  • Клецель Марк Яковлевич
  • Нефтисов Александр Витальевич
RU2618795C1
СПОСОБ ИЗМЕРЕНИЯ ТОКА 2008
  • Никитин Константин Иванович
  • Клецель Марк Яковлевич
  • Токомбаев Мират Тулегенович
  • Жантлесова Асемгуль Бейбутовна
RU2377579C2
СПОСОБ ИДЕНТИФИКАЦИИ УСТАНОВИВШЕГОСЯ ПЕРЕМЕННОГО ТОКА В ПРОВОДНИКЕ С ПОМОЩЬЮ ЗАМЫКАЮЩЕГО ГЕРКОНА 2017
  • Никитин Константин Иванович
  • Клецель Марк Яковлевич
  • Нефтисов Александр Витальевич
RU2643680C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ ТОКА 2023
  • Клецель Иосиф Яковлевич
  • Клецель Марк Яковлевич
  • Мызовский Константин Владимирович
RU2815306C1
Способ повышения чувствительности геркона с обмоткой управления, закрепленного вблизи проводника с током 2020
  • Богдан Александр Владимирович
  • Клецель Марк Яковлевич
  • Машрапова Ризагуль Мегданиятовна
RU2744511C1
УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ ПЕРЕМЕННОЙ ВЕЛИЧИНЫ 2010
  • Кувшинов Геннадий Евграфович
  • Коршунов Алексей Викторович
  • Михайленко Олег Сергеевич
RU2437064C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ И ВРЕМЕНИ ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ ОТ ТОКА КОРОТКОГО ЗАМЫКАНИЯ 2015
  • Муссонов Геннадий Петрович
  • Жданов Алексей Спиридонович
  • Снопкова Наталья Юльевна
RU2585966C1

Иллюстрации к изобретению RU 2 575 139 C1

Реферат патента 2016 года СПОСОБ ИЗМЕРЕНИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для измерения токов в электроустановках. Способ измерения тока короткого замыкания заключается в том, что четыре геркона устанавливают на безопасных расстояниях h1, h2, h3, h4 от проводника, угол между перпендикулярной линией продольной оси проводника и продольной осью первого геркона, второго, третьего и четвертого герконов составляет 90°. Настраивают герконы так, чтобы они срабатывали при токах срабатывания IСР4>ICP3>IСР2>ICP1. Измеряют время между замыканием первого и второго, второго и третьего геркона, третьего и четвертого геркона, которые расположены в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания IСР1, IСР2, IСР3, ICP4 в проводнике. Определяют амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima путем решения системы уравнений для токов срабатывания IСР1, IСР2, IСР3, ICP4, после чего определяют амплитуду полного тока короткого замыкания Iпол по формуле:

Технический результат заключается в повышении быстродействия релейной защиты. 2 ил.

Формула изобретения RU 2 575 139 C1

Способ измерения тока короткого замыкания, при котором фиксируют время t1,2 между замыканием контактов первого и второго герконов, которые расположены в магнитном поле проводника так, чтобы они замыкали контакты при соответствующих токах срабатывания IСР1, IСР2 в проводнике, второй геркон настраивают так, чтобы он срабатывал при токах срабатывания IСР2>IСР1,
составляют уравнения для IСР1, IСР2, используя t1,2, и определяют амплитуду полного тока короткого замыкания по формуле:

где Im - амплитуда периодической составляющей измеряемого тока;
t - время в любой момент времени;
H - электрический угол, отсчитываемый с момента наступления короткого замыкания до момента перехода через ноль периодической составляющей измеряемого тока короткого замыкания;
ima - начальное значение апериодической составляющей измеряемого тока;
- угловая частота тока;
Ta - постоянная времени,
отличающийся тем, что четыре геркона устанавливают на безопасных расстояниях h1 h2, h3, h4 от проводника, угол между перпендикулярной линией продольной оси проводника и продольной осью первого геркона, второго, третьего и четвертого герконов составляет 90°, причем настраивают герконы так, чтобы они срабатывали при токах срабатывания IСР4>IСР3>IСР2, дополнительно измеряют время между замыканием второго и третьего геркона, третьего и четвертого геркона и определяют амплитуду периодической составляющей измеряемого тока Im и начальное значение апериодической составляющей измеряемого тока ima из выражения:

где t1,2 - время между замыканием контактов первого и второго герконов;
t2,3 - время между замыканием контактов второго и третьего герконов;
t3,4 - время между замыканием контактов третьего и четвертого герконов;
tH - время до замыкания контактов первого геркона;
IСР1 - ток срабатывания первого геркона;
IСР2 - ток срабатывания второго геркона;
IСР3 - ток срабатывания третьего геркона;
IСР4 - ток срабатывания четвертого геркона,
используя которые определяют амплитуду полного тока
короткого замыкания Iпол.

Документы, цитированные в отчете о поиске Патент 2016 года RU2575139C1

Способ нанесения на литые изделия тонкого металлического слоя для предохранения изделия от ржавления 1930
  • Витрин К.Э.
SU21350A1
СПОСОБ ИЗМЕРЕНИЯ ТОКА В ПРОВОДНИКЕ С ПОМОЩЬЮ ГЕРКОНОВ 2008
  • Никитин Константин Иванович
  • Горюнов Владимир Николаевич
  • Клецель Марк Яковлевич
  • Токомбаев Мират Тулегенович
  • Майшев Павел Николаевич
RU2397499C2
Супергетеродинный радиоприемник 1930
  • Гольдман Г.С.
SU21241A1
Указатель короткого замыкания 1984
  • Черемисин Николай Михайлович
  • Зубко Владимир Михайлович
  • Гуревич Владимир Игоревич
  • Колбасин Павел Александрович
SU1226359A1
US 6433698 B1 13.08.2002
US 6014301 A1 11.01.2000.

RU 2 575 139 C1

Авторы

Клецель Марк Яковлевич

Жантлесова Асемгуль Бейсембаевна

Нефтисов Александр Витальевич

Майшев Павел Николаевич

Даты

2016-02-10Публикация

2014-09-23Подача