УПРАВЛЯЕМЫЙ ПОДМАГНИЧИВАНИЕМ ТРАНСФОРМАТОР Российский патент 2016 года по МПК H01F29/14 

Описание патента на изобретение RU2576630C2

Область техники, к которой относится изобретение.

Изобретение относится к электротехнике, в частности к управляемым источникам реактивной мощности, и может быть использовано для компенсации реактивной мощности в узлах сети высокого напряжения и стабилизации напряжения. УПТр предназначен для использования одновременно в качестве трансформатора и регулируемого источника реактивной мощности.

Уровень техники.

Известен патент электрического реактора с подмагничиванием [1]: [Россия. Патент на изобретение № RU 2439730, кл. H01F 29/14, 2010]. Данный реактор состоит из двух трехфазных магнитопроводов, расположенных в параллельных плоскостях. Регулирование реализуется за счет намагничивания стержней фаз постоянным током обмоток управления. Недостатком является изготовление специального магнитопровода с двумя стержнями в фазе, на каждом из которых размещаются силовые обмотки и обмотки управления. Также известен патент управляемого шунтирующего реактора-автотрансформатора [2]: [Россия. Патент на изобретение № RU 2352010, кл. H01F 29/14, C05F 1/10, 2007], в котором регулирование реактивной мощности реализуется за счет подключения обмотки управления к тиристорному регулятору. Недостатком является большая мощность регулятора, равная мощности трансформатора. Предлагаемое в настоящем изобретении перенесение обмоток управления на боковые стержни и намагничивание боковых стержней постоянным током позволяет снизить мощность регулятора более чем в 100 раз, по сравнению с [2].

Цель изобретения.

Совмещение функции однофазного трансформатора броневого типа и управляемого подмагничиванием реактора за счет размещения на боковых стержнях трансформатора броневого типа встречно включенных обмоток управления, подключенных к автоматически управляемому источнику постоянного напряжения. Постоянный ток, протекающий по обмоткам управления, приводит к насыщению боковых стержней трансформатора и к изменению потребляемой им реактивной мощности. В трехфазных сетях используется группа из 3-х УПТр.

Получение регулируемого источника реактивной мощности, аналогичного по функциям синхронному компенсатору, за счет подключения к вторичной обмотке трансформатора конденсаторной батареи и регулирования постоянного тока в обмотке управления.

Возможен отказ от специального изготовления однофазного УПТр за счет использования серийного трехфазного трансформатора, в котором в качестве обмоток управления используются обмотки боковых стержней.

Раскрытие изобретения.

Конструкция УПТр состоит из замкнутого магнитопровода, имеющего основной стержень 1, торцевых ярм 2, боковых стержней 3, обмоток управления 4, сетевой (первичной) 5 и нагрузочной (вторичной) 6 обмоток (фиг. 1). В качестве УПТр используется однофазный трансформатор броневого типа, на основном стержне которого размещаются первичная (5) и вторичная (6) обмотки, а на боковых стержнях размещаются две обмотки управления (4).

На фиг. 2 показана принципиальная электрическая схема соединения обмоток. К первичной обмотке подключена внешняя сеть (электроэнергетическая система), и напряжение на этой обмотке равно напряжению внешней сети. К вторичной обмотке может быть подключена батарея конденсаторов (КБ), фильтр высших гармоник (ФКУ), местная нагрузка (потребители), а также трансформатор собственных нужд (питающий источник постоянного напряжения, подключенный к обмоткам управления). Обмотки управления состоят из двух обмоток, расположенных на боковых стержнях, которые соединены последовательно и встречно. Далее обмотки управления присоединены к конденсатору, который шунтирует переменную составляющую напряжения обмотки управления, и источнику постоянного напряжения, выполняющего функцию устройства управления.

Если напряжение от устройства управления (источника постоянного напряжения) отсутствует, управляемый трансформатор работает как обычный трансформатор и его мощность равна мощности подсоединенных нагрузок к вторичной обмотке. Если к вторичной обмотке подсоединена только конденсаторная батарея, то мощность УПТр равна мощности конденсаторной батареи за вычетом потерь в сетевой и нагрузочной обмотках.

При подключении источника постоянного напряжения к обмотке управления по этим обмоткам управления протекает постоянный ток, который создает постоянное магнитное поле и приводит к глубокому насыщению боковых стержней и изменению индуктивности сетевой обмотки. Если конденсаторная батарея во вторичной обмотке отключена, то под действием напряжения сети ток первичной обмотки увеличивается до величины, когда магнитодвижущая сила (ампервитки) первичной обмотки (5) будет больше магнитодвижущей силы тока обмотки управления (4). Величина реактивной мощности УПТр пропорциональна величине тока, протекающего по обмоткам управления, и при номинальном токе в обмотках управления равна номинальной мощности сетевой обмотки. Это свойство можно интерпретировать как изменение индуктивности первичной обмотки под воздействием тока, протекающего по обмоткам управления.

При подключенной к вторичной обмотке батареи конденсаторов полная величина реактивной мощности является векторной суммой реактивной мощности конденсаторной батареи и мощности, создаваемой обмоткой управления.

В результате взаимодействия обмотки управления с первичной обмоткой через насыщенные сердечники в обмотке управления наводится напряжение частотой 100 Гц. Так как к обмотке управления подключен конденсатор, то напряжение 100 Гц на ней имеет малую величину. В обмотке управления возникает ток частотой 100 Гц, величина которого определяется сопротивлением полей рассеяния обмотки управления. Величина тока частотой 100 Гц оценивается в 15-20% от постоянной составляющей тока управления.

Величина напряжения на обмотке управления постоянна и соответствует активным сопротивлениям обмоток управления. Мощность источника управления в номинальном режиме равна величине потерь короткого замыкания в обмотке управления. Для мощных трансформаторов величина потерь составляет 0,2-0,3% от мощности обмотки. Так как используются две обмотки управления, то номинальная мощность регулятора напряжения будет равна 0,4-0,6% мощности трансформатора. Суммарные потери в обмотках при номинальной мощности УПТр будут 0,6-0,8% от мощности УПТр.

Соотношение сечений обмоток УПТр определяется планируемыми режимами использования. Если предполагается управление мощностью УПТр в пределах ±S при подключенной к обмотке 2 батареи конденсаторов мощностью S, то обмотки 5, 6 имеют одинаковое сечение, а обмотка 4 имеет удвоенное сечение. Если планируется коммутация батареи конденсаторов в зависимости от режима УПТр, то обмотки 4, 5, 6 имеют одинаковое сечение.

Если планируется использование УПТр только как управляемый источник реактивной мощности, мощность вторичной обмотки можно принять равной 2% от мощности УПТр.

Для регулирования тока, протекающего по обмоткам управления, используется автоматический регулятор напряжения в узле подключения УПТр, который позволяет поддерживать напряжение заданной величины за счет изменения реактивной мощности. Если трехфазная группа из УПТр использует один регулятор напряжения, то она эквивалента синхронному компенсатору (СК). Если используются регуляторы напряжения для каждого УПТр, то трехфазная группа УПТр позволит нормализовать напряжения каждой их фаз и за счет этого нормализовать напряжение обратной последовательности и колебания напряжение для каждой из фаз. Если вместо КБ использовать фильтры высших гармоник, то трехфазная группа УПТр позволит нормализовать напряжение высших гармоник в каждой из фаз узла подключения.

В качестве однофазного УПТр можно использовать серийный трехфазный трансформатор. Использование обмоток трехфазного трансформатора показано на фиг. 3. Подключение обмоток к сети и регуляторам тока показано на фиг. 4. Все обмотки трансформатора имеют одинаковое сечение и одинаковую мощность. Обмотки отличаются величинами номинальных напряжений. Обмотки 1, 3 высоковольтные, например 110 кВ или 220 кВ. 2,4 низковольтные, соответствующие вторичному напряжению, например 10 кВ.

Для оценки мощности системы управления используются параметры серийного трансформатора, на базе которого предполагается реализовать УПТр. Например, если использовать трансформатор ТРДН40000/110 с номинальной мощностью Sт 40 МВт с потерями холостого хода 0,094%, короткого замыкания 0,42%, то мощность одной фазы Sф равна 13,3 МВт. Активные потери в одной обмотке равны 0,21% Sф. Исходя из потерь активной мощности, номинальная мощность регулятора тока управления равняется 0,21% Sф. Для ускорения переходных процессов в обмотке управления используется двукратная форсировка возбуждения. Соответственно напряжение возбудителя увеличивается до величины 0,4% Uф.

Для обеспечения регулирования реактивной мощности УПТр в пределах ±Sф мощность конденсаторной батареи равна Sфн. При токе управления, равном нулю, реактивная мощность имеет емкостной характер и равна - Sф. Потери в сетевой и вторичной обмотках составят 0,42 Sф. При токе управления, равном номинальному, и отключенной батареи конденсаторов, реактивная мощность равна + Sф. Регулятор тока может получать питание от обмотки 2. Так как мощность регулятора менее 1% мощности обмотки, то увеличения мощности обмотки не требуется.

При использовании регуляторов напряжения для управления мощностью УПТр (управление величиной тока в обмотке управления) будет стабилизировано напряжение в точке измерения, контролируемого регулятором напряжения.

Если использовать трехфазную группу из 3-х трансформаторов, то эта группа обеспечит плавное автоматическое управление реактивной мощности в пределах ±Sт, По своим возможностям комбинация УПТр+КБ эквивалентна синхронному компенсатору. По сравнению с СК в данном варианте используется не один, а три трехфазных трансформатора и конденсаторная батарея (количество трансформаторов утраивается, но не требуется вращающаяся электрическая машина и поэтому не требуется постоянное обслуживание). Стоимость и потери почти в 2 раза меньше, чем при использовании СК, меньше эксплуатационные издержки. Маленькая мощность регуляторов, простота обслуживания и эксплуатации делает оправданным широкое использования УПТр в распределительных сетях для стабилизации напряжения, повышения надежности за счет отказа от РПН на трансформаторах и снижения потерь активной мощности.

В настоящее время для стабилизации напряжения в узлах сети высокого напряжения используются управляемые шунтирующие реакторы с подмагничиванием (УШРП), изготавливаемые на Запорожском трансформаторном заводе совместно с конденсаторными батареями. УПТр решает эту же задачу, но в отличие от УШРП не требуется специальное изделие, а могут использоваться серийные трансформаторы. Наличие в УПТр вторичной обмотки облегчает и удешевляет подключение конденсаторной батареи, так как она подключается на напряжение 10 кВ или 35 кВ, а не 110 кВ и 220 кВ, что приводит к существенному (в 5-10 раз) снижению стоимости выключателя и в 2-3 раза всей батареи. Эти свойства УПТр создают условия для улучшения работы распределительных сетей за счет стабилизации напряжения.

Для подтверждения свойств, УПТр был реализован на трехфазном трансформаторе с номинальным напряжением 380 В мощностью 820 ВА. Напряжение фазное 220 В. Мощность фазы номинальная 273 В*А, ток 1,85 А. Номинальное напряжение вторичной обмотки равно 26 В. Трансформатор использовался в качестве однофазного УПТр мощностью 270 ВА. Регулировочные характеристики УПТр в режиме управляемого подмагничиванием реактора приведены на фиг. 5. Они показывают, что реактивная мощность УПТр пропорциональна току управления и напряжению сети. На фиг. 6 приведены осциллограммы тока и напряжения сетевой обмотки и обмотки управления. Ток сети близок к синусоидальному. Напряжение управления постоянное и значительно меньше напряжения сети. В токе управления кроме постоянной составляющей имеется ток частотой 100 Гц, который улучшает форму тока сетевой обмотки.

Регулировочные характеристики УПТр при подключении конденсаторной батареи приведены на фиг. 7. Этот рисунок показывает, что УПТр может генерировать и поглощать реактивную мощность, то есть работать в режиме синхронного компенсатора.

Приведены зависимости реактивной мощности УПТр от токов управления и от напряжения сети, которые показывают, что изменение тока управления приводит к изменению входной проводимости УПТР, которая суммируется с проводимостью, создаваемой батареей конденсаторов.

Похожие патенты RU2576630C2

название год авторы номер документа
ИСТОЧНИК РЕАКТИВНОЙ МОЩНОСТИ 2007
  • Брянцев Александр Михайлович
RU2335026C1
ИСТОЧНИК РЕАКТИВНОЙ МОЩНОСТИ 2010
  • Брянцев Александр Михайлович
RU2410786C1
ИСТОЧНИК РЕАКТИВНОЙ МОЩНОСТИ 2010
  • Брянцев Александр Михайлович
RU2410785C1
УСТРОЙСТВО РЕГУЛИРОВАНИЯ РЕАКТИВНОЙ МОЩНОСТИ ЭЛЕКТРИЧЕСКОЙ СЕТИ (ВАРИАНТЫ) 2015
  • Леонид Нисонович Конторович
RU2585007C1
УПРАВЛЯЕМЫЙ ПОДМАГНИЧИВАНИЕМ ШУНТИРУЮЩИЙ РЕАКТОР 2014
  • Ивакин Виктор Николаевич
  • Магницкий Андрей Андреевич
RU2562062C1
СПОСОБ УПРАВЛЕНИЯ ИСТОЧНИКОМ РЕАКТИВНОЙ МОЩНОСТИ 2007
  • Брянцев Александр Михайлович
RU2337424C1
УСТРОЙСТВО ДЛЯ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ В ВЫСОКОВОЛЬТНЫХ СЕТЯХ 2019
  • Кузьмин Сергей Васильевич
  • Завалов Артем Александрович
  • Кузьмин Роман Сергеевич
  • Меньшиков Виталий Алексеевич
  • Кузьмин Илья Сергеевич
RU2727148C1
СПОСОБ УПРАВЛЕНИЯ МОЩНОСТЬЮ РЕАКТОРА С ПОДМАГНИЧИВАНИЕМ 2004
  • Брянцев Александр Михайлович
  • Долгополов Андрей Геннадьевич
RU2282913C2
СТАТИЧЕСКИЙ КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ 2004
  • Брянцев Александр Михайлович
  • Долгополов Андрей Геннадьевич
RU2282912C2
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ МОЩНОСТЬЮ РЕАКТОРА С ПОДМАГНИЧИВАНИЕМ 2000
  • Брянцев А.М.
  • Долгополов А.Г.
RU2181915C1

Иллюстрации к изобретению RU 2 576 630 C2

Реферат патента 2016 года УПРАВЛЯЕМЫЙ ПОДМАГНИЧИВАНИЕМ ТРАНСФОРМАТОР

Изобретение относится к электротехнике, к управляемым источникам реактивной мощности, может быть использовано для компенсации реактивной мощности в узлах сети высокого напряжения и стабилизации напряжения и предназначено для использования одновременно в качестве трансформатора, если напряжение от устройства управления отсутствует, и регулируемого источника реактивной мощности, аналогичного по функциям синхронному компенсатору за счет подключения ко вторичной обмотке трансформатора конденсаторной батареи и регулирования постоянного тока в обмотке управления. Управляемый подмагничиванием трансформатор отличается от однофазных трансформаторов броневого типа тем, что на боковых стержнях магнитопровода дополнительно размещены обмотки управления, включенные встречно и подключенные к регулируемому источнику постоянного напряжения. Изобретение обеспечивает возможность отказа от специального изготовления однофазного управляемого подмагничиванием трансформатора за счет использования серийного трехфазного трансформатора, в котором в качестве обмоток управления используются обмотки боковых стержней.9 ил.

Формула изобретения RU 2 576 630 C2

Управляемый подмагничиванием трансформатор, отличающийся от однофазных трансформаторов броневого типа тем, что на боковых стержнях сердечника (магнитопровода) дополнительно размещены обмотки управления, включенные встречно и подключенные к регулируемому источнику постоянного напряжения.

Документы, цитированные в отчете о поиске Патент 2016 года RU2576630C2

Однофазный трехстержневой трансформатор 1946
  • Розенкранц А.С.
SU69775A1
US 6317021 B1, 13.11.2001
УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР-ТРАНСФОРМАТОР 2007
RU2360316C2
Трехфазный управляемый реактор 1987
  • Забудский Евгений Иванович
  • Ермураки Юрий Васильевич
  • Маху Виктор Федорович
SU1541681A1
Электрический реактор с регулируемым подмагничиванием 1990
  • Бики Меньгерт Акошевич
  • Бродовой Евгений Николаевич
  • Брянцев Александр Михайлович
  • Лейтес Леонид Вениаминович
  • Лурье Александр Иосифович
  • Мозжерин Виктор Николаевич
  • Чижевский Юрий Леонидович
SU1803934A1
ЭЛЕКТРИЧЕСКИЙ РЕАКТОР С ПОДМАГНИЧИВАНИЕМ 2001
  • Брянцев А.М.
  • Лурье А.И.
  • Бики Меньгерт Акошевич
  • Уколов Сергей Владимирович
RU2217829C2
УПРАВЛЯЕМЫЙ ШУНТИРУЮЩИЙ РЕАКТОР-АВТОТРАНСФОРМАТОР 2007
RU2352010C2
ЭЛЕКТРИЧЕСКИЙ РЕАКТОР С ПОДМАГНИЧИВАНИЕМ 2010
  • Брянцев Александр Михайлович
RU2439730C1

RU 2 576 630 C2

Авторы

Осак Алексей Борисович

Смирнов Сергей Сергеевич

Шинкарев Павел Сергеевич

Даты

2016-03-10Публикация

2013-05-08Подача