СИСТЕМА МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ КОЧЕТОВА Российский патент 2016 года по МПК A62C13/00 

Описание патента на изобретение RU2577654C1

Изобретение относится к противопожарной технике.

Наиболее близким по технической сущности и достигаемому результату является способ пожаротушения по патенту РФ №2478409, в котором тушение пожара осуществляют посредством сосуда, в котором хранят огнетушащее вещество, и соединяют его с пусковым баллоном с рабочим газом (прототип).

Недостатком известной системы является сравнительно невысокая эффективность пожаротушения.

Технический результат - повышение эффективности пожаротушения за счет использования высокократной пены.

Это достигается тем, что в системе модульного пожаротушения, который осуществляют посредством сосуда, в котором хранят огнетушащее вещество, а сосуд, в котором хранится огнетушащее вещество, крепят кронштейнами к строительной конструкции помещения и оснащают его устройством сброса газовой фазы, совмещенным с мерным щупом для огнетушащего вещества и запорно-пусковым устройством, например электромагнитного типа, которое соединено трубопроводом с трубкой для ввода огнетушащей жидкости в пеногенератор, который оснащают вводами для одновременной подачи жидкости и газа, при этом подачу жидкости осуществляют по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, а тангенциальную подачу жидкости осуществляют через коаксиальный с цилиндрическим соплом корпус в виде цилиндро-конической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполняют два ряда подводящих жидкость тангенциальных каналов, имеющих по крайней мере три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикрепляют круглую пластину, расположенную перпендикулярно оси вихревой кольцевой камеры, и жестко соединяют ее с цилиндрической полостью корпуса, а в ее концевом сечении перпендикулярно круглой пластине прикрепляют щелевое сопло, состоящее из двух взаимно перпендикулярных прямоугольных параллелепипедов с дроссельными сквозными отверстиям прямоугольного сечения, соединенными с полостью корпуса.

На фиг. 1 представлена схема системы модульного пожаротушения, на фиг. 2 - схема пеногенератора вихревого типа, на фиг. 3 - вид А на фиг. 2.

Система модульного пожаротушения (фиг. 1) содержит сосуд 1, в котором хранится огнетушащая жидкость. Он крепится кронштейнами 3 к строительной конструкции 4 помещения и имеет устройство сброса газовой фазы 2, совмещенное с мерным щупом для огнетушащего вещества. Сосуд 1 оснащен запорно-пусковым автоматическим устройством 5 (ЗПУ), например электромагнитного типа, которое соединено трубопроводом 6 с вводом огнетушащей жидкости в пеногенератор 13.

Пеногенератор 13 вихревого типа (фиг. 1 и 2) содержит систему подачи жидкости по двум направлениям, включающую осевую подачу жидкости через подводящий патрубок 14 и последовательно соединенные и соосные с ним конфузор 16 и цилиндрическое сопло 17. Тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом 17 корпус 18 в виде цилиндрической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера 19 с патрубком 20 для подачи жидкости, при этом по краям кольцевой камеры 19 выполнены два ряда 21 и 22 подводящих жидкость тангенциальных каналов (не показано), при этом в каждом ряду имеются по крайней мере три тангенциальных канала, соединяющих кольцевую камеру 19 с цилиндрической полостью 23 корпуса 18, к которой соосно прикреплена круглая пластина 24 (фиг. 3), расположенная перпендикулярно оси вихревой кольцевой камеры 19, и жестко соединенная с цилиндрической полостью 23 корпуса 18, в ее концевом сечении, а перпендикулярно круглой пластине 24 прикреплено щелевое сопло 25, которое выполнено комбинированным и состоит из двух взаимно перпендикулярных прямоугольных параллелепипедов 26 и 27 с дроссельными сквозными отверстием прямоугольного сечения, соединенными с полостью корпуса 18.

Пеногенератор 13 вихревого типа работает следующим образом.

По трубопроводу 6 из сосуда 1, в котором хранится огнетушащая жидкость, осуществляется подача огнетушащей жидкости в пеногенератор 13 через подводящий патрубок 14, а также одновременно по воздуховоду 8 от турбокомпрессора 7 через осевой ввод 15 осуществляется подачи газа (воздуха) в камеру смешения 23 пеногенератора, где происходит образование двухфазного потока.

Вихри жидкости впрыскиваются в камеру смешения 23 через размещенные в ней рядами 21 и 22 тангенциальные каналы, которые смешиваются с набегающим воздушным потоком из осевого ввода 15, в результате чего образуется газокапельный поток. Максимальные значения давления воздуха на входе в пеногенератор 13 и относительной концентрации воды в двухфазном потоке выбираются из условия предельно плотной упаковки частиц воды в воздушном потоке: gP=5,7108 Па, где Р - давление газа на входе в сопло; g - относительная концентрация воды в двухфазном потоке. Для достижения необходимой (свыше 50 м) дальности полета газокапельной струи давление газа (воздуха) на входе в сопло должно превышать Р=5,5105 Па;

g=Gввoд/Gвoз=4,9,

где Gввод=26 кг/с - массовый расход воды; Gвоз=5,3 кг/с - массовый расход воздуха; Тсм=298 К - температура двухфазного потока; L=1500 мм - длина корпуса 5 цилиндрической гильзы с соплом; D=50 мкм - средний диаметр капель воды в воздушном потоке.

Созданный в камере смешения 23 двухфазный поток при указанных выше параметрах разгоняется в щелевом комбинированном сопле 25 в двух взаимно перпендикулярных направлениях по дроссельным сквозным отверстиям прямоугольного сечения, выполненных прямоугольных параллелепипедах 26 и 27. Использование одновременной комбинированной подачи огнетушащей жидкости и газа (воздуха) позволяет компактировать газокапельную струю при относительно однородном распределении капель воды по сечению струи и расширить зону подачи газокапельной струи.

Полученные результаты свидетельствуют о том, что двухфазный поток, параметры которого выбираются согласно вышеуказанным условиям, разгоняется в газодинамическом корпусе до скорости, при которой дальность полета газокапельной струи составляет 65 м.

Наиболее эффективно использование предложенного технического решения в противопожарной технике, особенно при тушении пожаров в труднодоступных очагах и объектах.

При среднем давлении подаваемой через камеру смешения 23 жидкости под давлением 6…9 МПа обеспечивается распыление от 400 до 1000 кг/ч жидкости.

В начале факела распыленная струя раствора пенообразователя имеет наибольшую скорость и за счет эжекции воздуха формируется пена с пузырьками как малого размера (2÷3 мм в поперечнике), так и с более крупными пузырьками (4÷12 мм в поперечнике). Таким образом, пеногенератор 13 вырабатывает полидисперсную (разноразмерную по пузырькам) пену, которая обладает свойством быстрого растекания по поверхности.

По воздуховоду 8 от турбокомпрессора 7 сигнал на включение которого поступает одновременно с сигналом на включение запорно-пускового автоматического устройства 5 от блока управления 9 системой пожаротушения. Для обеспечения автоматического режима пожаротушения ЗПУ 5 и турбокомпрессор 7 соединены электрически через блок управления 9 с дымовыми извещателями 10, 11, 12.

Система модульного пожаротушения работает следующим образом.

При возникновении возгорания в защищаемом помещении (не показано) извещатели 10, 11, 12 подают сигнал на блок управления 9, который в свою очередь вырабатывает электрический импульс на открытие ЗПУ 5 и включение турбокомпрессора 7.

Сосуд 1, в котором хранится огнетушащее вещество, крепят кронштейнами к строительной конструкции 4 помещения и оснащают его устройством сброса 2 газовой фазы, совмещенным с мерным щупом для огнетушащего вещества и запорно-пусковым устройством (ЗПУ) 5, который соединяют трубопроводом 6 с вводом огнетушащей жидкости пеногенератора 13. Сигнал на включение турбокомпрессора 7 подают одновременно с сигналом на включение запорно-пускового автоматического устройства 5 от блока управления 9 системой пожаротушения. Для обеспечения автоматического режима пожаротушения ЗПУ 5 и турбокомпрессор 7 соединяют электрически через блок управления 9 с дымовыми извещателями 10, 11, 12.

Жидкость, вытесняемая из емкости 1 сжатым газом, поступает через открытое запорно-пусковое устройство 5 в пеногенератор вихревого типа 13 и через подводящий патрубок 14 - в цилиндрическую камеру смешения 23. Кроме того, вихри жидкости впрыскиваются в камеру смешения 23 через размещенные в ней рядами 21 и 22 тангенциальные каналы для подвода огнетушащей жидкости, при этом одновременно по воздуховоду 8 от турбокомпрессора 7 через осевой ввод 15 осуществляется подачи газа (воздуха) в камеру смешения 23 пеногенератора, где происходит образование двухфазного потока. Потоки огнетушащей жидкости смешиваются с набегающим воздушным потоком из осевого ввода 15, в результате чего образуется газокапельный поток. В камере смешения 23 происходит смешение вихревого потока воздуха с жидкостью с образованием пены, которая представляет собой дисперсную систему, где пузырьки воздуха заключены в тонкие оболочки негорючей жидкости (водные растворы солей, кислот, поверхностно-активных веществ). Огнегасящий эффект пены основан на изоляции поверхности горящей жидкости от кислорода воздуха и нагретых горючих паров, выделяющихся с поверхности этой жидкости. Пена не только резко сокращает процесс испарения, но и охлаждает поверхность горящей жидкости. Воздушно-механическая пена образуется при механическом смешении воздуха и поверхностно-активного вещества (пенообразователь ПО-1 или ПО-6). В воздушно-механической пене содержится около 90% (по объему) воздуха и 10% водного раствора пенообразователя. Для тушения пожаров эффективнее применять высокократную воздушно-механическую пену, в которой содержится около 99% (по объему) воздуха, 0,96% воды и около 0,04% пенообразователя. Кратность обычной воздушно-механической пены 8÷12, а высокократной - 100 и более. Стойкость воздушно-механической пены: от 20 до 40 мин.

Пену следует применять при горении хлопкового волокна других плохо смачивающихся волокнистых материалов. Особенно эффективна пена при тушении пожаров легковоспламеняющихся жидкостей (ЛВЖ), а также горючих жидкостей.

Похожие патенты RU2577654C1

название год авторы номер документа
СПОСОБ МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ КОЧЕТОВА 2015
  • Кочетов Олег Савельевич
RU2597632C1
СПОСОБ МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ 2015
  • Стареева Мария Олеговна
RU2594087C1
СПОСОБ МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ 2012
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2478409C1
УСТАНОВКА МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ 2011
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2474447C1
СПОСОБ МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2429035C1
УСТАНОВКА МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2419474C1
МОБИЛЬНАЯ УСТАНОВКА КОЧЕТОВА ПОЖАРОТУШЕНИЯ С ДВУХФАЗНЫМ РАСПЫЛИТЕЛЕМ 2015
  • Кочетов Олег Савельевич
RU2581379C1
МОБИЛЬНАЯ УСТАНОВКА КОЧЕТОВА ПОЖАРОТУШЕНИЯ С ДВУХФАЗНЫМ РАСПЫЛИТЕЛЕМ 2016
  • Кочетов Олег Савельевич
RU2617613C1
МОБИЛЬНАЯ УСТАНОВКА ПОЖАРОТУШЕНИЯ С ДВУХФАЗНЫМ РАСПЫЛИТЕЛЕМ 2017
  • Кочетов Олег Савельевич
RU2645501C1
ПЕНОГЕНЕРАТОР КОЧЕТОВА 2016
  • Кочетов Олег Савельевич
RU2622927C1

Иллюстрации к изобретению RU 2 577 654 C1

Реферат патента 2016 года СИСТЕМА МОДУЛЬНОГО ПОЖАРОТУШЕНИЯ КОЧЕТОВА

Изобретение относится к противопожарной технике. Технический результат - повышение эффективности пожаротушения за счет использования высокократной пены. Это достигается тем, что в способе модульного пожаротушения, который осуществляют посредством сосуда, в котором хранят огнетушащее вещество, а сосуд, в котором хранится огнетушащее вещество, крепят кронштейнами к строительной конструкции помещения и оснащают его устройством сброса газовой фазы, совмещенным с мерным щупом для огнетушащего вещества и запорно-пусковым устройством, например, электромагнитного типа, которое соединено трубопроводом с трубкой для ввода огнетушащей жидкости в пеногенератор, который оснащают вводами для одновременной подачи жидкости и газа, при этом подачу жидкости осуществляют по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, а тангенциальную подачу жидкости осуществляют через коаксиальный с цилиндрическим соплом корпус в виде цилиндро-конической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполняют два ряда подводящих жидкость тангенциальных каналов, имеющих по крайней мере три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикрепляют круглую пластину, расположенную перпендикулярно оси вихревой кольцевой камеры, и жестко соединяют ее с цилиндрической полостью корпуса, а в ее концевом сечении перпендикулярно круглой пластине прикрепляют щелевое сопло, состоящее из двух взаимно перпендикулярных прямоугольных параллелепипедов с дроссельными сквозными отверстиями прямоугольного сечения, соединенными с полостью корпуса. 3 ил.

Формула изобретения RU 2 577 654 C1

Система модульного пожаротушения, содержащая сосуд, в котором хранят огнетушащее вещество, устройства для подвода воздуха и огнетушащего вещества к пеногенератору, пеногенератор, отличающаяся тем, что сосуд, в котором хранится огнетушащее вещество, крепится кронштейнами к строительной конструкции помещения и имеет устройство сброса газовой фазы, совмещенное с мерным щупом для огнетушащего вещества, при этом сосуд оснащен запорно-пусковым автоматическим устройством, например, электромагнитного типа, которое соединено трубопроводом с вводом огнетушащей жидкости в пеногенератор, который содержит систему подачи жидкости по двум направлениям, включающую осевую подачу жидкости через подводящий патрубок и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, при этом тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом корпус в виде цилиндрической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполнены два ряда подводящих жидкость тангенциальных каналов, а в каждом ряду имеются по крайней мере три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикреплена круглая пластина, расположенная перпендикулярно оси вихревой кольцевой камеры и жестко соединенная с цилиндрической полостью корпуса в ее концевом сечении, а перпендикулярно круглой пластине прикреплено щелевое сопло, которое выполнено комбинированным и состоит из двух взаимно перпендикулярных прямоугольных параллелепипедов с дроссельными сквозными отверстиями прямоугольного сечения, соединенными с полостью корпуса.

Документы, цитированные в отчете о поиске Патент 2016 года RU2577654C1

УСТРОЙСТВО СОЗДАНИЯ ГАЗОКАПЕЛЬНОЙ СТРУИ КОЧЕТОВА 2012
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2482928C1
УСТРОЙСТВО СОЗДАНИЯ ДАЛЬНОБОЙНОЙ ГАЗОКАПЕЛЬНОЙ СТРУИ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2432212C1
СПОСОБ СОЗДАНИЯ ГАЗОКАПЕЛЬНОЙ ДВУХФАЗНОЙ СТРУИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Лепешинский И.А.
RU2252080C1
РАСПЫЛИТЕЛЬ ЖИДКОСТИ (ВАРИАНТЫ) 2001
  • Душкин А.Л.
  • Карпышев А.В.
RU2184619C1

RU 2 577 654 C1

Авторы

Кочетов Олег Савельевич

Даты

2016-03-20Публикация

2015-02-06Подача