СПОСОБ ГЕОХИМИЧЕСКОГО ТЕСТИРОВАНИЯ ЛОКАЛЬНЫХ ОБЪЕКТОВ ПРИ ПРОГНОЗЕ НЕФТЕГАЗОНОСНОСТИ Российский патент 2016 года по МПК G01V9/00 

Описание патента на изобретение RU2577801C2

Изобретение относится к области геохимии и может быть использовано для поисков нефтяных и газовых месторождений.

Известен способ поиска и прогноза продуктивности углеводородных залежей и месторождений, включающий биогеохимическое тестирование (БГХТ), основанное на определении в горных породах суммарной концентрации высокомолекулярных соединений (СК) с учетом показателя сорбционной активности (ПСА), по которому судят о принадлежности образцов керна, шлама к определенному литологическому типу горных пород в пробах, последовательно отбираемых от поверхности по глубине, в котором на стадии, предшествующей постановке глубокого бурения, осуществляемой в процессе проходки неглубоких скважин, и/или в процессе бурения глубоких скважин, в скважинах, подготовленных к БГХТ, проводят БГХТ в пределах тест-интервала, расположенного вблизи биогеохимического барьера, разделяющего разрез на верхнюю зону, в которой доминирующее влияние на величину и распределение СК по глубине оказывают техногенные и/или природные факторы, и нижнюю зону, в которой величина и распределение фонового уровня СК по глубине определяются естественным присутствием и жизнедеятельностью микроорганизмов. Причем положение биогеохимического барьера определяют по одновременному изменению и установлению разброса значений СК с глубиной на уровне 10-15% в эталонной непродуктивной скважине, вскрывающей типовой геологический разрез до глубины залегания потенциально продуктивного горизонта. При этом верхнюю границу тест-интервала определяют как наименьшую глубину, начиная с которой влияние факторов техногенного и/или природного происхождения качественно не изменяют форму распределения СК, а устойчивое отличие значений среднеквадратичного отклонения СК от фонового уровня среднеквадратичного отклонения СК с глубиной составляет более 20% на протяжении не менее 50 м в пределах конкретного стратиграфического подразделения и/или конкретного литологического типа горных пород, нижнюю границу тест-интервала устанавливают на глубине не менее 50 м от верхней границы с интервалом отбора проб не менее 5 м. И по устойчивому превышению значений среднеквадратичного отклонения СК по сравнению с фоновым уровнем среднеквадратичного отклонения СК в соответствующем стратиграфическом подразделении и/или конкретном литологическом типе горных пород в эталонной непродуктивной скважине от его верхней границы до нижней судят о наличии углеводородной залежи под тестируемой скважиной. А по стабилизации значений среднеквадратичного отклонения СК на уровне фона в соответствующем стратиграфическом подразделении и/или конкретном литологическом типе горных пород в эталонной непродуктивной скважине от его верхней границы до нижней судят об отсутствии углеводородной залежи под тестируемой скважиной (патент РФ на изобретение №2156483, МКИ G01V 9/00. Опубл. 20.09.2000 г.).

Однако известный способ сложен и недостаточно точен при поиске залежей углеводородов.

Известен также способ поиска углеводородных залежей, включающий биогеохимическое тестирование на стадии, предшествующей постановке глубокого бурения, осуществляемого в процессе проходки неглубоких скважин и/или в процессе бурения глубоких скважин, в скважинах, подготовленных к биогеохимическому тестированию, проведение биогеохимического тестирования в пределах тест-интервала, расположенного ниже биогеохимического барьера, разделяющего разрез на верхнюю зону, в которой доминирующее влияние на величину и распределение концентрации высокомолекулярных соединений органического происхождения по глубине оказывают техногенные и/или природные факторы, и нижнюю зону, в которой величина и распределение фонового уровня концентрации высокомолекулярных соединений органического происхождения по глубине определяются естественным присутствием и жизнедеятельностью микроорганизмов, определение наличия углеводородной залежи под тестируемой скважиной, в котором при биогеохимическом тестировании образцы группируют по принадлежности к литотипам пород. В каждом образце замеряют концентрацию высокомолекулярных соединений органического происхождения, для каждого литотипа пород вычисляют среднее значение концентрации высокомолекулярных соединений органического происхождения. Выбирают литотип пород с максимальным значением среднего значения концентрации высокомолекулярных соединений органического происхождения. Для выбранного литотипа породы строят график изменения значения концентрации высокомолекулярных соединений органического происхождения по глубине. Определение наличия углеводородной залежи под тестируемой скважиной проводят по наличию наклона графика, а определение отсутствия углеводородной залежи под тестируемой скважиной проводят по стабилизации значений концентрации высокомолекулярных соединений органического происхождения и приближению графика к вертикальной прямой (патент РФ на изобретение №2200334, МКИ G01V 9/00. Опубл. 20.09.2000 г.).

Недостатками данного способа являются высокие затраты и неточность прогноза залежи углеводородов из-за ограничения, дискретности данных.

Наиболее близким к предлагаемому по своей технической сущности является способ геохимического тестирования локальных объектов при прогнозе нефтегазоносности, включающий бурение шпуров, поверхностное газогеохимическое эталонирование с отбором проб, хроматографический анализ газов, определение состава углеводородного газа от метана до гексана включительно, использование полученных данных для расчетов фоновых значений газогеохимических показателей (патент РФ на изобретение №2298816, МКИ G01V 9/00. Опубл. 10.05.2007 г. ).

Но этот способ недостаточно информативен и достоверен, т.к. коренными породами могут быть не только глины, но и другие литологические разности пород: песчаники, алевролиты, мергели, галечники и т.д. В этом случае характер распределения углеводородных газов будет принципиально отличаться от характера распределения газов, полученных из глинистых пород, что вносит изменения в методику работ и влияет на корректность способа.

Задачей, на решение которой направлено заявленное изобретение, является увеличение информативности и достоверности выявления перспективных нефтегазовых участков.

Поставленная задача решается тем, что в способе геохимического тестирования локальных объектов при прогнозе нефтегазоносности, включающем бурение шпуров, поверхностное газогеохимическое эталонирование с отбором проб, хроматографический анализ газов, определение состава углеводородного газа от метана до гексана включительно, использование полученных данных для расчетов фоновых значений газогеохимических показателей, проводят согласно изобретению аэрокосмосъемку исследуемой территории и последующее дешифрирование фотоматериалов или дешифрируют имеющиеся аэрокосмофотоматериалы исследуемой территории. Выделяют на исследуемой территории структуры/блоки, на выделенных структурах/блоках бурят шпуры и отбирают в них пробы свободных газов. Проводят хроматографический анализ свободных газов и определяют в них состав углеводородных газов. Определяют тектоническую напряженность структур/блоков. Ранжируют структуры/блоки по углеводородному геохимическому фону и по тектонической напряженности и структуры/блоки с минимальными углеводородным геохимическим фоном и тектонической напряженностью считают перспективными в нефтегазоносном отношении.

Технический результат заключается в сочетании геохимических и геодинамических методов исследования выбранной территории и использовании свободных, а не сорбированных газов.

Способ осуществляется следующим образом.

Проводят аэрокосмосъемку исследуемой территории и последующее дешифрирование контрастно-аналоговым или обычным визуальным способом фотоснимков или дешифрируют имеющиеся аэрокосмофотоматериалы. Выделяют на исследуемой территории структуры/блоки, на которых бурят, например, мотобуром шпуры глубиной до 5 м.

С целью изоляции забоя шпуров от атмосферного воздуха их тампонируют и создают на забое вакуум, например, с помощью вакуумного насоса.

Ожидают приток свободных газов в шпуры (забой) и отбирают их с помощью пробоотборника в предназначенные для хранения газов герметически закрывающиеся емкости.

Проводят хроматографический анализ свободных газов и определяют в них состав углеводородных газов (от метана до гексана включительно).

Определяют по результатам дешифрирования тектоническую напряженность структур/блоков.

Ранжируют выделенные структуры/блоки по углеводородному геохимическому фону (например, от структур/блоков с минимальным геохимическим фоном к структурам/блокам с максимальным геохимическим фоном) и по тектонической напряженности (например, от структур/блоков с минимальной тектонической напряженностью к структурам/блокам с максимальной тектонической напряженностью).

И структуры/блоки с минимальными углеводородным геохимическим фоном и геодинамической напряженностью считают перспективными в нефтегазоносном отношении.

Анализ отобранных в процессе поиска известных технических решений показал, что в науке и технике нет объекта, аналогичного по заявленной совокупности признаков, что позволяет сделать вывод о соответствии критериям "новизна" и "изобретательский уровень".

Для доказательства соответствия предлагаемого решения критерию "промышленная применимость" приводим пример конкретного выполнения заявляемого способа.

Пример. Заявленный способ был апробирован на территории северо-западного обрамления Прикаспийской впадины. Обзорная схема территории исследований приведена на фиг. 1.

По ранее проведенным аэрокосмосъемкам (фиг. 2) северо-западного обрамления Прикаспийской впадины провели дешифрирование контрастно-аналоговым способом имеющихся аэрокосмофотоматериалов, которые использовались для выбора первоочередных объектов при геологоразведочных работах на нефть и газ.

В процессе дешифрирования были использованы практически все имеющиеся фотоматериалы: фотоматериалы масштаба 1:25000; фотокарты масштаба 1:50000; высотные аэрокосмофотоматериалы масштаба 1:100000.

Основное развитие в пределах площади получили три подтипа ландшафта: овражно-балочный рельеф, террасовый комплекс и лиманные урочища.

В структурно-геоморфологическом плане выделены:

- локальные морфоструктуры с положительными и отрицательными характеристиками;

- линеаментная сеть, фиксируемая по руслам эрозионных врезов, границам выходов геологических горизонтов, почв различного типа, растительных сообществ, участков различной увлажненности;

- трещиноватость, около 30% которой относится к планетарной.

Характерные признаки геодинамической напряженности:

- трещиноватость (фиг. 3);

- денудационные и эрозионные уступы (фиг. 4);

- перехваты верховьев эрозионных врезов (фиг. 5);

- водораздельные останцы;

- суффозия;

- узлы пересечения линеаментов различного направления (фиг. 6).

На исследуемой территории - участки (структуры/блоки) №№1, 2 (фиг. 7) - были поставлены газогеохимические (А) и геодинамические (Б) работы, получена геохимическая характеристика участков (таблица 1) и определена их геодинамическая характеристика (таблица 2).

Из таблиц 1, 2 следует, что минимальным углеводородным геохимическим фоном и минимальной тектонической напряженностью обладает участок №1, который и был рекомендован для проведения буровых работ

По результатам глубокого бурения подтвержден положительный прогноз геохимического тестирования: скважина Смеловская 1 вскрыла нефтяной пласт в породах бобриковского возраста, получен промышленный приток нефти -4,0 м3.

Таким образом, заявленный способ позволяет увеличить информативность и достоверность выявления перспективных нефтегазовых участков.

Похожие патенты RU2577801C2

название год авторы номер документа
Геохимический способ поиска месторождений углеводородов 2017
  • Орлов Валерий Викторович
RU2675415C1
СПОСОБ ГЕОХИМИЧЕСКОГО ТЕСТИРОВАНИЯ ЛОКАЛЬНЫХ ОБЪЕКТОВ ПРИ ПРОГНОЗЕ НЕФТЕНОСНОСТИ 2005
  • Близеев Александр Борисович
  • Войтович Сергей Евгеньевич
  • Куличков Владимир Петрович
  • Хисамов Раис Салихович
  • Чернышова Марина Геннадьевна
RU2298816C2
СПОСОБ ПОИСКА УГЛЕВОДОРОДНЫХ ЗАЛЕЖЕЙ 2002
  • Нижарадзе Т.Н.
  • Рязанова М.С.
  • Муслимов Р.Х.
  • Хисамов Р.С.
RU2200334C1
Способ оптимизации нефтепоисковых работ 2022
  • Навроцкий Олег Константинович
  • Меркулов Олег Игоревич
  • Зотов Алексей Николаевич
RU2794388C1
Способ прямых поисков нефтегазосодержащих участков недр 2016
  • Кусов Батрбек Рамазанович
RU2650707C1
СПОСОБ ПРОГНОЗА ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ 2007
  • Обжиров Анатолий Иванович
RU2359290C1
СПОСОБ ПРОГНОЗА ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ 2010
  • Чистяков Виктор Борисович
  • Хабаров Андрей Николаевич
  • Неручев Сергей Германович
  • Наумов Кир Кирович
RU2449324C1
СПОСОБ ПОИСКА И ПРОГНОЗА ПРОДУКТИВНОСТИ УГЛЕВОДОРОДНЫХ ЗАЛЕЖЕЙ И МЕСТОРОЖДЕНИЙ 1999
  • Муслимов Р.Х.
  • Нижарадзе Т.Н.
  • Назипов А.К.
  • Кобряков В.И.
  • Шакиров А.Н.
  • Билялов Н.Г.
  • Рязанова М.С.
  • Кобряков Д.В.
RU2156483C1
СПОСОБ ЛОКАЛЬНОГО ПРОГНОЗА НЕФТЕНОСНОСТИ 2005
  • Близеев Александр Борисович
  • Гатиятуллин Накип Салахович
  • Хисамов Раис Салихович
  • Чернышова Марина Геннадьевна
RU2298817C2
СПОСОБ ПОИСКА ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ В НЕТРАДИЦИОННЫХ КОЛЛЕКТОРАХ БАЖЕНОВСКОЙ СВИТЫ 2015
  • Вашкевич Алексей Александрович
  • Стрижнев Кирилл Владимирович
  • Заграновская Джулия Егоровна
  • Жуков Владислав Вячеславович
RU2596181C1

Иллюстрации к изобретению RU 2 577 801 C2

Реферат патента 2016 года СПОСОБ ГЕОХИМИЧЕСКОГО ТЕСТИРОВАНИЯ ЛОКАЛЬНЫХ ОБЪЕКТОВ ПРИ ПРОГНОЗЕ НЕФТЕГАЗОНОСНОСТИ

Заявленное изобретение относится к области геохимии и может быть использовано для поисков нефтяных и газовых месторождений. Сущность: по данным аэрокосмосъемки выделяют на исследуемой территории структуры/блоки. На выделенных структурах/блоках бурят шпуры и отбирают в них пробы свободных газов. Проводят хроматографический анализ свободных газов и определяют в них состав углеводородных газов. Определяют тектоническую напряженность структур/блоков. Ранжируют структуры/блоки по углеводородному геохимическому фону и по тектонической напряженности. Структуры/блоки с минимальными углеводородным геохимическим фоном и тектонической напряженностью считают перспективными в нефтегазоносном отношении. Технический результат: повышение информативности и достоверности прогноза. 7 ил., 2 табл.

Формула изобретения RU 2 577 801 C2

Способ геохимического тестирования локальных объектов при прогнозе нефтегазоносности, включающий бурение шпуров, поверхностное газогеохимическое эталонирование с отбором проб, хроматографический анализ газов, определение состава углеводородного газа от метана до гексана включительно, использование полученных данных для расчетов фоновых значений газогеохимических показателей, отличающийся тем, что проводят аэрокосмосъемку исследуемой территории и последующее дешифрирование фотоматериалов или дешифрируют имеющиеся аэрокосмофотоматериалы исследуемой территории, выделяют на исследуемой территории структуры/блоки, на выделенных структурах/блоках бурят шпуры и отбирают в них пробы свободных газов, проводят хроматографический анализ свободных газов и определяют в них состав углеводородных газов, определяют тектоническую напряженность структур/блоков, ранжируют структуры/блоки по углеводородному геохимическому фону и по тектонической напряженности и структуры/блоки с минимальными углеводородным геохимическим фоном и тектонической напряженностью считают перспективными в нефтегазоносном отношении.

Документы, цитированные в отчете о поиске Патент 2016 года RU2577801C2

Е.К.Толмачева
Влияние геологического строения и неотектонической активности зоны сочленения Пугачевского свода и Бузулукской впадины на распределение углеводородных газов в приповерхностных отложениях
Автореф
диссертации на соискание уч
степени кандидата геолого-минералогических наук
Саратов, 2009
СПОСОБ ГЕОХИМИЧЕСКОГО ТЕСТИРОВАНИЯ ЛОКАЛЬНЫХ ОБЪЕКТОВ ПРИ ПРОГНОЗЕ НЕФТЕНОСНОСТИ 2005
  • Близеев Александр Борисович
  • Войтович Сергей Евгеньевич
  • Куличков Владимир Петрович
  • Хисамов Раис Салихович
  • Чернышова Марина Геннадьевна
RU2298816C2

RU 2 577 801 C2

Авторы

Зотов Алексей Николаевич

Навроцкий Олег Константинович

Бондаренко Валентина Васильевна

Даты

2016-03-20Публикация

2014-07-31Подача