Изобретение относится к области измерительной электротехники и может быть использовано для оценки пригодности вновь разрабатываемых электросчетчиков от неконтролируемого отбора электроэнергии (отмотки) из энергетических электросетей.
Известны устройства для проверки электросчетчиков [1-6].
Ближайшим аналогом заявляемому техническому решению (прототипом) является «Устройство для поверки индукционных приборов учета электроэнергии», по Патенту РФ №2521307, опубл. в №18 от 27.06.14 [5], содержащее накопительные конденсаторы, заряжаемые прерывистым током на повышенной частоте прерываний и плавно разряжаемых обратно в сеть, а также транзисторные цепи прерывания тока и коммутации плавного разряда накопительных конденсаторов, отличающееся тем, что включает две параллельно подключенные к сети после поверяемого электросчетчика цепи из последовательно соединенных накопительного конденсатора и двунаправленного транзисторного коммутатора, образующие мостовую схему так, что накопительный конденсатор первой цепи подклюючен к фазному проводнику сети, а конденсатор второй цепи подключен к нулевому проводнику сети, а в диагонали этой мостовой схемы включены последовательно соединенные симистор и катушка индуктивности, причем транзисторы двунаправленных транзисторных коммутаторов указанных цепей и симистор подключены к соответствующим выходам блока управления транзисторами и симистором, синхронизация работы которого осуществляется от сети.
Недостатком известного устройства является его повышенная сложность блока управления транзисторами и симистором. Этот недостаток устранен в заявляемом устройстве.
Целью изобретения является упрощение устройства.
Указанная цель достигается в заявляемой двухполупериодной схеме для испытания электросчетчиков на отбор электроэнергии, содержащей мостовую схему из двух параллельно подключенных к сети ветвей, в каждой из которых использован накопительный конденсатор импульсного типа, а в диагонали мостовой схемы использован симистор разрядной цепи, включенный между выводами двух накопительных конденсаторов, другие выводы которых включены к сети, а также устройство управления симистором, отличающейся тем, что последовательно с накопительными конденсаторами мостовой схемы включены дроссели в соответствующих зарядных ветвях мостовой схемы, а схема управления симистором разрядной цепи, включающим накопительные конденсаторы последовательно при их разряде обратно в сеть, содержит двухзвенную фазосдвигающую цепь с понижающим трансформатором, вторичная обмотка которого включена к переходу «управляющий электрод-катод» симистора разрядной цепи, причем двухзвенная фазосдвигающая цепочка задает сдвиг по фазе сетевого напряжения в диапазоне фаз Δφ в диапазоне π/2<Δφ<π относительно начала каждого периода сетевого напряжения (при φ=0).
Достижение цели изобретения объясняется существенным снижением количества оборудования при сохранении высокой мощности отмотки показаний электросчетчиков.
Схема устройства приведена на рис. 1. На рис. 2 дан график изменения во времени напряжения на накопительных конденсаторах. На рис. 3 дан график зарядного и разрядниго токов в каждом из накопительных конденсаторах мостовой схемы.
На рис. 1 устройство содержит два связанных субблока:
1 - мостовое устройство, включающее одинаковые накопительные конденсаторы емкостью С, дроссели с индуктивностью L и сильноточный импульсный симистор S;
2 - блок управления симистором S разрядной цепи мостовой схемы 1, содержащий двухзвенную фазосдвигающую цепь из одинаковых конденсаторов с емкостью СФ и парой резисторов R1 и R2, а также понижающий трансформатор Тр, вторичная обмотка которого подключена к переходу «управляющий электрод-катод» симистора разрядной цепи. Коэффициент трансформации k=w1/w2>>1, где w1 и w2 - числа витков соответственно первичной и вторичной обмоток трансформатора Тр.
Рассмотрим работу заявляемого устройства.
В начале положительной полуволны переменного напряжения сети через дроссели L происходит заряд накопительных конденсаторов C в каждой из двух ветвей мостовой схемы 1 в течение первой четверти периода, а точнее в диапазоне изменения фазы напряжения 0≤φ≤π/2+Δφ*. При этом малая величина Δφ* определяет некоторое снижение напряжения на накопительных конденсаторах на величину ΔU<<UO относительно амплитудного напряжения сети UO=(2)1/2 UC, где UC - действующее напряжение сети, равное в норме 220 B (для однофазной сети), так что конечное напряжение, до которого заряжаются накопительные конденсаторы
При включении симистора S при фазе φ2 напряжение на двух одинаковых накопительных конденсаторах С удваивается и становится равным
Ток заряда накопительных конденсаторов происходит через дроссели L, активное сопротивление которых должно быть не более величины Rдр≤Т / 20 C. При Т=0,02 с для Rдр получаем значение Rдр≤0,001 / C. Так, при C=100 мкФ=10-4 Ф это сопротивление дросселя должно быть не более 10 Ом, чтобы накопительные конденсаторы успевали полностью заряжаться до величины
Интересно отметить, что индуктивность дросселей L следует выбирать по условию последовательного резонанса напряжений, для которого должно выполняться равенство T/2=2π (L С)1/2 или L=(Т/4π)2/С=2,5 мГн (при C=100 мкФ). Волновое сопротивление такого последовательного контура на частоте последовательного резонанса 100 Гц равно ρ=(L/С)1/2=(0,0025/0,0001)1/2=5 Ом. Если активное сопротивление дросселя больше 5 Ом, то добротность такого контура Q=ρ/Rдр<1, и поэтому напряжение в накопительных конденсаторах не превосходит величины
При действии отрицательной полуволны каждого периода переменного напряжения сети все аналогичные вышеуказанному процессы повторяются, и при этом накопительные конденсаторы мостовой схемы перезаряжаются, как это видно на рис. 2 и 3. Это исключает использование в схеме полярных электролитических конденсаторов. Подходящими могут быть импульсные конденсаторы типа К75-17-1000 В-50 мкФ или К75-40--750 В-100 мкФ - ОЖО.464.230 ТУ.
Если пренебречь потерями энергии внутри схемы по ее цепи разряда, можно в соответствие с законом сохранения заряда записать выражение:
где К>>1 - безразмерный множитель, равный отношению амплитуды разрядного импульса к амплитуде зарядного (при φ=π/8), учитывая равенство площадей под кривыми зарядного и разрядного токов, то есть K - есть относительная амплитуда разрядного импульса по отношению к амплитуде зарядного, принимаемой за единицу.
Учитывая то важное обстоятельство, что амплитуда напряжения в последовательно включенных накопительных конденсаторах в начале разряда равна
Из выражения (1) при исходных данных для T=0,02 с и τ=rC C/2=5·10-5 с получаем K=11,166. Подставляя K в выражение (2) находим L=1,575. При мощности заряда
Реально достижимая величина мощности «отмотки» оказывается несколько меньше указанной расчетной величины, поскольку в схеме разрядной цепи имеются неизбежные потери с учетом внутреннего сопротивления конденсаторов и тиристора, а также подводящих проводников от схемы до электросчетчика, обычно разнесенных между собой. Кроме того, на уменьшение мощности «отмотки» может повлиять весьма короткая длительность разрядного импульса (около 34 мкс), ширина спектра которого (порядка 30 кГц) существенно выше частоты сетевого напряжения более, чем на два порядка. Поэтому реальная мощность ΔP определяется опытным путем для каждой из таких схем с учетом различия внутреннего сопротивления сети в месте размещения рассматриваемого устройства, а также параметров используемых в устройстве элементов. Кстати, внутреннее сопротивление rC сети легко определяется по формуле:
где UXX - напряжение в сети при холостом ходе (без нагрузки). UH - напряжение в присоединенной к сети нагрузке RH (желательно достаточно мощной нагрузке). Например, при холостом напряжении сети UXX=220 B и при подключении мощной нагрузки RH=24 Ом измеренное значение напряжения на ней снижается до UH=217,3 В (рассеиваемая в нагрузке мощность составляет при этом 2 кВт). Тогда внутреннее сопротивление сети определяется согласно (3) в величиной rC=24 [(220/217,3)-1]=0,298 Ом.
Для рассмотренного примера при использовании накопительных конденсаторов с емкостью 100 мкФ мощность отмотки в индукционном электросчетчике, например, типа СО-2М, широко распространенного пока еще в стране, порядка 550 Вт. Для ее повышения следует увеличивать емкость С накопительных конденсаторов, что соответственно увеличивает постоянную времени цепи разряда т и соответственно расширяет длительность разрядного импульса, равную ΔtРАЗР МАХ≈3τ и отсчитываемую практически на уровне, близком к нулевому. Возникает вопрос, до каких предельных величин можно увеличивать емкость C накопительных конденсаторов?
Максимальное значение емкости C для данной схемы должно быть меньше величины T/4=5 мс. Так что при rC=0,3 Ома максимальная величина емкости CMAX=T/6 rC=0,0111 Ф=11100 мкФ. При этом значение
Выбор достаточно большой величины емкости накопительных конденсаторов определяет немалую стоимость всего устройства, однако при общей емкости двух накопительных конденсаторов в 22000 мкФ можно получить мощность отмотки порядка 35 кВт. Это означает, что при стоимости 1 кВт·часа по 5 р «экономия» от хищения электроэнергии недобросовестными пользователями составит за месяц непрерывной работы такого устройства около 128000 рублей. Это может причинить весьма значительный ущерб энергоснабжающим организациям, что нацеливает разработчиков новых электросчетчиков к разработке приборов учета электроэнергии, нечувствительных к отмотке их показаний подобным заявляемому устройством. Под отмоткой надо понимать не буквальный реверс в показаниях счетчика, который невозможен, например, в цифровых приборах учета или в приборах индукционного типа со стопором обратного хода вращающегося диска. Если потребляемая мощность полезной нагрузкой пользователя меньше мощности отмотки, то такие приборы учета вообще не будут учитывать потребляемую нагрузкой мощность. Если потребляемая нагрузкой мощность больше мощности отмотки, то прибор учета будет фиксировать только мощность, равную разности этих мощностей, то есть в любом случае будет нанесен ущерб энергоснабжающим организациям.
Несколько слов следует сказать о параметрах элементов блока управления 2. Пусть φ2=π/4+Δφ*=1,05 π/4, как для первоначально рассмотренного примера с C=100 мкФ, Тогда легко рассчитать, что при выборе конденсаторов СФ=1 мкФ величина резистора R1=1,3 кОм (мощностью 8 Вт), а величина резистора R2 при использовании понижающего трансформатора Тр с коэффициентом трансформации k=10 должна быть равной R2=13 Ом (мощностью 3 Вт), на котором возникает переменное напряжение с действующим значением напряжения 5,5 B, достаточным для запуска симистора S.
Отметим, что по мере завершения разряда накопительных конденсаторов симистор S автоматически закрывается до его следующего включения в каждом из полупериодов сетевого напряжения. Когда на аноде симистора действует положительное напряжение, то его включение также осуществляется положительным напряжением на заданном его уровне. Если на аноде симистора действует отрицательное напряжение, то и управляющее напряжение на управляющем электроде симистора отрицательно, что автоматически исполняется с применением трансформатора Тр при его соответствующем включении, указанном точками (рис. 1) на его обмотках.
Предложение следует рекомендовать разработчикам электросчетчиков для проверки их нечувствительности к «отмотке» показаний потребляемой электроэнергии. Пример такого счетчика предложен в [7].
Литература
1. Меньших О.Ф., Устройство для проверки работы однофазных индукционных электросчетчиков, Патент №2474825, Опубл. в бюлл. №4 от 10.02.2013.
2. Меньших О.Ф., Мостовое устройство для проверки электросчетчиков активной энергии индукционного типа, Патент №2522706, опубл. в №20 от 20.07.2014.
3. Меньших О.Ф., Устройство для контроля электросчетчиков, Патент №2521782, опубл. в №19 от 10.07.2014.
4. Меньших О.Ф., Устройство для исследования работы индукционных электросчетчиков, Патент №2523109, опубл. в №20 от 20.07.2014.
5. Меньших О.Ф., Устройство для проверки индукционных приборов учета электроэнергии, Патент №2521307, опубл. в №18 от 27.06.14 (прототип).
6. Меньших О.Ф., Устройство проверки индукционных электросчетчиков, Патент №2532861, опубл. в №31 от 10.11.2014.
7. Меньших О.Ф., Устройство учета электроэнергии, Патент №2521767, опубл. в №19 от 10.07.2014.
7692421 B2, 06.04.2010 US 6362745 Данные патентного поиска
RU 2338217 C1, 10.11.2008. RU 2181894 C1, 27.04.2002. RU 2190859 C2, 10.10.2002. RU 2178892 C2, 27.01.2002. SU 1781628 A1, 15.12.1992. SU 1780022 A1, 07.12.1992. SU 1422199 A1, 07.09.1988. US B1, 26.03.2002 EP 1065508 A2, 03.01.2001.
Изобретение относится к области измерительной электротехники и может быть использовано для оценки пригодности вновь разрабатываемых электросчетчиков от неконтролируемого отбора электроэнергии (отмотки) из энергетических электросетей. Двухполупериодная схема для испытания электросчетчиков на отбор электроэнергии, содержащая мостовую схему из двух параллельно подключенных к сети ветвей, в каждой из которых использован накопительный конденсатор импульсного типа, а в диагонали мостовой схемы использован симистор разрядной цепи, включенный между выводами двух накопительных конденсаторов, другие выводы которых включены к сети, а также устройство управления симистором. Последовательно с накопительными конденсаторами мостовой схемы включены дроссели в соответствующих зарядных ветвях мостовой схемы, а схема управления симистором разрядной цепи, включающим накопительные конденсаторы последовательно при их разряде обратно в сеть. Двухзвенная фазосдвигающая цепь с понижающим трансформатором, вторичная обмотка которого включена к переходу «управляющий электрод-катод» симистора разрядной цепи. Причем двухзвенная фазосдвигающая цепочка задает сдвиг по фазе сетевого напряжения в диапазоне фаз Δφ в диапазоне π/2<Δφ<π относительно начала каждого периода сетевого напряжения (при φ=0). Технический результат заключается в упрощении устройства. 3 ил.
Двухполупериодная схема для испытания электросчетчиков на отбор электроэнергии, содержащая мостовую схему из двух параллельно подключенных к сети ветвей, в каждой из которых использован накопительный конденсатор импульсного типа, а в диагонали мостовой схемы использован симистор разрядной цепи, включенный между выводами двух накопительных конденсаторов, другие выводы которых включены к сети, а также устройство управления симистором, отличающаяся тем, что последовательно с накопительными конденсаторами мостовой схемы включены дроссели в соответствующих зарядных ветвях мостовой схемы, а схема управления симистором разрядной цепи, включающим накопительные конденсаторы последовательно при их разряде обратно в сеть, содержит двухзвенную фазосдвигающую цепь с понижающим трансформатором, вторичная обмотка которого включена к переходу «управляющий электрод-катод» симистора разрядной цепи, причем двухзвенная фазосдвигающая цепочка задает сдвиг по фазе сетевого напряжения в диапазоне фаз Δφ в диапазоне π/2<Δφ<π относительно начала каждого периода сетевого напряжения (при φ=0).
УСТРОЙСТВО ДЛЯ ПРОВЕРКИ ЧУВСТВИТЕЛЬНОСТИ ЭЛЕКТРОННОГО ЭЛЕКТРОСЧЕТЧИКА С ДВУМЯ ТОКОВЫМИ ЦЕПЯМИ С АКТИВНОЙ НАГРУЗКОЙ И РЕАКТИВНОЙ КОМПЕНСАЦИЕЙ | 2007 |
|
RU2338217C1 |
Способ контроля потребления электроэнергии | 1989 |
|
SU1780022A1 |
СЧЕТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ | 2001 |
|
RU2181894C1 |
Устройство автоматизированной поверки счетчиков электроэнергии | 1987 |
|
SU1422199A1 |
US 6362745 B1, 26.03.2002. |
Авторы
Даты
2016-04-20—Публикация
2015-03-13—Подача