ТЕПЛИЧНЫЙ ПРОЦЕСС Российский патент 2016 года по МПК A01G9/00 A01G9/24 A01G31/02 

Описание патента на изобретение RU2581876C2

Настоящее изобретение относится к технологии выращивания растительной продукции в промышленных теплицах и может быть использовано в фитотронах для получения высококачественных растительных продуктов с выраженными жизнестимулирующими свойствами и способностью замедлять процесс старения человека.

Известны способы выращивания сельхозпродукции в теплицах с предпосевной обработкой семян, с использованием гидропонного полива, искусственных сред, освещения и вентиляции, а также тепличных транспортных модулей, передвигающихся по трубам регистра надпочвенного обогрева, разнесенных горизонтально.

Наиболее совершенным считается тепличный процесс с капельным поливом, при котором питательный раствор удобрений подается к растению по тонкой трубочке в виде капель (см. "Рекомендации: технология приготовления и подачи питательного раствора в теплицах на малообъемной гидропонике" М.: Росагропромиздат, 1988; и "Система капельного орошения для защищенного грунта" ВНИИводполимер, Латв. ССР, Елгава, 1987. ВДНХ).

Недостатками этих и других существующих тепличных процессов являются:

- забивание тонких трубочек осадком солей, что увеличивает объем трудозатрат в теплице;

- абсолютная зависимость производительности растений от качественных и количественных характеристик естественного освещения;

- большие расходы электроэнергии на стационарное освещение и вентилирование растений;

- почти полная невозможность влиять на фотосинтетические процессы и функцию корневой системы в процессе выращивания растений;

- недостаточно высокая автоматизация процесса и низкая производительность труда с большим количеством ручных операций.

Цели настоящего изобретения состоят в том, чтобы разработать более экономичный и производительный способ выращивания растений в физиологически обоснованном режиме, допускающий более высокую степень автоматизации и механизации работ при стандартных системах регулирования микроклимата и небольших изменениях существующих систем приготовления и подачи питательных растворов.

Поставленные цели достигаются следующими путями:

1. Засорение тонких трубочек осадком солей предотвращают тем, что в существующую систему растворения и подачи удобрений, например суперфосфата, вводятся следующие дополнения:

а) маточные насыщенные растворы получают с применением ультразвуковых колебаний, а затем разделяют микрофильтрацией на загрязненный и чистый потоки, причем загрязненный поток далее центрифугируют с выделением плотного грязевого осадка, а чистый насыщенный фильтрат выдерживают в охлаждаемых отстойниках для отделения избытка солей кристаллизацией, после чего маточный раствор используют для приготовления рецептуры рабочего поливочного раствора после достижения им температуры, которая имеется по регламенту культивирования в теплице;

б) при подаче рабочих растворов удобрений в систему полива через ряд фильтров их не смешивают как обычно, а подают раздельно по своим собственным системам к растению через свою индивидуальную трубочку или форсунку;

в) осадок растворенного прежде удобрения (осадок после кристаллизации) заливают в емкости отстоя таким же или меньшим, по отношению к объему раствора, количеством подогретой воды, и после полного растворения перекачивают слабый раствор в емкость для подогрева до регламентной температуры с последующей подачей в систему приготовления рабочего раствора для полива.

Этими дополнениями достигается более полная утилизация удобрений, так как отстой и охлаждение раствора проводят в специальной емкости, из которой можно использовать осадок растворимого удобрения, а не там, где готовят маточный раствор, осадок от которого выбрасывается вместе с нерастворимыми частицами. Кроме того, некоторое удорожание системы полива за счет дублирования ее для разных видов удобрений быстро окупается снижением ручных операций по замене засорившихся трубочек и постоянному поиску их на больших площадях теплиц, а также их замене. Трубочки и форсунки при индивидуальных системах подачи удобрений могут работать без замены несколько лет.

В конкретном примере общая схема приготовления питательного (рабочего) раствора для полива имеет следующий вид (фиг. 1):

- засыпка удобрения в маточную емкость 1 для растворения,

- заливка горячей воды и получение грязного маточного раствора,

- перекачка раствора после оседания мути из маточной емкости в отстойную емкость 2 для охлаждения до температуры воздуха в теплице и выпадения избытка растворенного удобрения,

- центрифугирование охлажденного маточного раствора на аппарате 3 с отбросом грязной фракции в канализацию и выделением чистого маточного раствора в емкости 4,

- перекачка (дозирование, согласно рецептуре) остывшего раствора без осадка с попутным определением параметров устройством 5 из емкости 4 в емкость 6 для приготовления рабочего раствора, контроля основных ингредиентов раствора (датчики не показаны) и для достижения температуры поливочной жидкости,

- подача готового рабочего раствора в систему полива через магистраль 7,

- закачка в отстойную емкость 2 воды в таком же или меньшем по отношению к объему прежнего раствора количестве для растворения выпавшего осадка и получения слабого раствора удобрения,

- микроочистка на центрифуге 3,

- перекачка очищенного слабого раствора удобрения в термостатируемую емкость 4 для выравнивания температуры и контроля исходных параметров раствора (датчики не показаны),

- подача слабого раствора удобрения в систему (емкость 6) приготовления рабочего питательного раствора,

- перекачка готового рабочего раствора для полива через магистраль 7.

Осадок твердых нерастворимых частиц из маточной емкости удаляют через нижнее выпускное отверстие в канализацию (система удаления не показана).

Все стадии данного процесса легко автоматизируются имеющимися в настоящее время средствами.

2. Зависимость растения от интенсивности и качества естественного освещения устраняется следующими мерами:

а) естественное освещение в наиболее важные периоды жизни растения заменяется усовершенствованным искусственным с необходимыми параметрами;

б) спектральный состав искусственного освещения подбирается согласно спектру поглощения хлорофилла для данного вида растения и особенностям пропускания световых волн разной длинны поверхностным слоем листовой пластинки;

в) правильность подбора спектра излучения ламп проверяется, например, по синтезирующей функции листа.

Общая схема работ по организации требуемого освещения в конкретном примере принимает следующий вид:

- определение критических и полукритических, с точки зрения необходимого освещения, периодов развития растения,

- получение спектров поглощения хлорофилла и поверхностной пластинки листа,

- создание на осветительных приборах соответствующих цветопокрытий для коррекции спектра излучения ламп,

- проверка правильности подбора параметров искусственного освещения, например, по крахмалообразующей функции листа.

Эта схема справедлива и в случаях применения активаторов или ингибиторов фотосинтеза, например ванадия, для томатов и т.д.

3. Экономия электроэнергии при искусственном освещении и вентилировании растений достигается тем, что осветительные блоки и вентиляторы выполнены в транспортабельном виде и размещены на тележках, передвигаемых вдоль рядов растений по разнесенным монорельсам или трубам, что обеспечивает периодическое мощное освещение и вентилирование растений в рядах.

Такие тележки или модули могут быть сгруппированы по нескольку штук, неся на себе различные функциональные приспособления и агрегаты.

Конкретный пример тележки со светоблоком изображен на фиг. 2.

Контактные и опорные монорельсы или трубы 8 разнесены. По ним скользят контактные щетки 9 и катятся подпружиненные колеса 10. Электромоторы 11 работают синхронно. Рама 12 несет на себе фотоблок с лампами 13 и вентиляторами 14.

4. Экономия места теплиц с возможностью высева большего количества растений достигается тем, что привычные центральные дороги в теплице могут быть значительно уменьшены по ширине, поскольку передвижные тележки могут свободно передвигаться с людьми и оборудованием между стандартно расположенными рядами растений. Тележек может быть несколько типов: для людей и оборудования, для фотоблоков, для вентиляционных агрегатов, для вывоза готовых овощей и др.

В этом случае ряды (гряды) растений лучше располагать не поперек, а вдоль теплицы или же, в случае организации теплицы в круглом здании, по спирали, что облегчает систему автоматизации процессов освещения, вентилирования, опрыскивания растений. Гряды (ряды) по своей длине могут иметь несколько разрывов, формирующих поперечные дорожки, облегчающих вывоз плодов и другие операции.

5. Облегчение трудовых операций и повышение производительности труда достигается тем, что рабочие в основном передвигаются по теплице на тележках вместе с ящиками и технологическим оборудованием.

6. Возможность влиять на процессы фотосинтеза, роста и развития растений достигают также и специализацией отдельных участков корневой системы при зонном питании.

Зонным питанием мы называем подачу разных питательных компонентов, в том числе и воздуха (газо-воздушных смесей), в разные участки грунта или субстрата, охваченного корневой системой. При этом участок субстрата с будущей корневой системой заключают в изолированный объем, например в торфоперегнойный горшочек с быстро разрушаемой стенкой.

Конкретный пример изображен на фиг. 3.

Сетчатый цилиндр 15, выполнен с возможностью внесения в него растения 16 с куском 17 рассадного грунта. Цилиндр размещают в слое субстрата 18, который может демпфировать и рассредоточивать излишки питательных растворов и воздушных смесей, накапливающихся во вспомогательном субстрате 19 внутри сетчатого цилиндра. Зонное питание растения представлено трубками 20 для веществ, наиболее склонных к образованию осадка и для газо-воздушных смесей, трубками 21 для растворов веществ, выполняющих роль физиологических стабилизаторов процесса роста и развития растений, и трубками 22 для других растворов питательных веществ.

По всем трубкам возможна подача чистой воды или растворов для восстановления функций субстратов.

7. Оптимизация условий для физиологически полноценного прорастания семян растений достигается тем, что на семени создают некоторый избыток микроэлементов с добавками веществ, влияющих на качество фотосинтеза в будущих листьях.

В конкретном примере для семян томата сбалансированный раствор микроэлементов может пополняться растворимым соединением ванадия, улучшающего усвоение световой энергии растением. Удерживание повышенного количества микроэлементов на растении, в данном случае, в стадии семени, достигается применением безвредных пленкообразователей, например слабых растворов желатина, полиэтиленоксида и др., причем обработка семян может быть повторной.

Эта операция может применяться не только в тепличном процессе, но и в открытом грунте, где ее значение даже возрастает.

Использование предлагаемого тепличного процесса с описанными особенностями обеспечивает по сравнению с существующими процессами следующие преимущества:

- возможность управлять синтетическими способностями растений в промышленном масштабе и получать от растений максимальную сортовую и видовую продуктивность, что достигается идентификацией спектров поглощения растения и спектра излучения осветительных устройств, зонным питанием растений и подбором режимов фотопериодичности;

- снижение объема ручных операций, что достигается применением систем полива, исключающих засорение форсунок и тонких трубочек осадком солей удобрений, а также применением подвижных фотоблоков, позволяющих освещать рассаду на больших площадях при высаживании ее сразу на постоянное место или в соответствующие питательные горшочки, исключающих последующую пикировку рассады при ее пересадке;

- повышение производительности и культуры труда, что достигается использованием передвижных тележек для транспортировки людей и технического оборудования, а также способами работы с семенным материалом, что исключает некоторые побочные ручные операции. Этому способствует также система зонной поливки растений, предотвращающая засорение трубочек для полива, а также высокий уровень автоматизации при приготовлении и дозировании питательных растворов.

Похожие патенты RU2581876C2

название год авторы номер документа
ТЕПЛИЧНЫЙ КОМПЛЕКС ДЛЯ РАЙОНОВ КРАЙНЕГО СЕВЕРА (УСТРОЙСТВО И СПОСОБ) 2013
  • Антуфьев Игорь Александрович
  • Алексеева Маргарита Игоревна
  • Антуфьева Валентина Ивановна
  • Попова Софья Игоревна
  • Попов Сергей Анатольевич
RU2550599C2
СПОСОБ СТИМУЛЯЦИИ РАЗВИТИЯ, РОСТА И ПРОДУКТИВНОСТИ РАСТЕНИЙ НА ГИДРОПОННЫХ УСТАНОВКАХ ТЕПЛИЧНОГО КОМПЛЕКСА 2010
  • Куницын Михаил Владиславович
RU2448457C1
ФАБРИКА-ТЕПЛИЦА ДЛЯ ИНТЕНСИВНОГО РАСТЕНИЕВОДСТВА (УСТРОЙСТВО И СПОСОБ) 2011
  • Антуфьев Игорь Александрович
RU2487527C2
ТЕПЛИЦА-КОРОВНИК ДЛЯ СЕВЕРНЫХ РЕГИОНОВ СТРАНЫ (УСТРОЙСТВО И СПОСОБ) 2011
  • Антуфьев Игорь Александрович
  • Антуфьева Валентина Ивановна
  • Алексеева Маргарита Игоревна
RU2501209C2
СПОСОБ РАЗМНОЖЕНИЯ ОЗДОРОВЛЁННЫХ РАСТЕНИЙ КАРТОФЕЛЯ 2001
  • Зейрук В.Н.
  • Баркалов А.Г.
  • Тихонова Л.В.
  • Бессонов А.С.
  • Назаров Н.М.
  • Паремский И.Я.
  • Коршунов А.В.
  • Черников В.И.
  • Масюк Ю.А.
  • Марьяновская М.В.
  • Жулин А.И.
  • Сычёв А.Е.
RU2206976C2
ТЕПЛИЦА 2018
  • Коротеев Денис Александрович
RU2682749C1
СПОСОБ ВЫРАЩИВАНИЯ РАСТЕНИЙ 2007
  • Апанасов Леон Александрович
  • Хомутов Игорь Васильевич
RU2339217C1
Способ выращивания растениеводческой продукции в вертикально ориентированных тепличных комплексах 2020
  • Болотин Григорий Михайлович
  • Болотин Михаил Григорьевич
  • Гордон Павел Львович
RU2735220C1
Комплекс для производства растительной продукции 2015
  • Фенюк Эдуард Олегович
  • Багаутдинова Гузель Рафатовна
RU2616396C2
СПОСОБ ПОДКОРМКИ РАСТЕНИЙ, ВЫРАЩИВАЕМЫХ В ЗАЩИЩЕННОМ ГРУНТЕ 2012
  • Коваленко Дарья Викторовна
  • Смирнов Алексей Павлович
RU2527065C2

Иллюстрации к изобретению RU 2 581 876 C2

Реферат патента 2016 года ТЕПЛИЧНЫЙ ПРОЦЕСС

Изобретение относится к технологии выращивания растительной продукции в промышленных теплицах. Тепличный процесс для выращивания растений с применением питательных растворов характеризуется тем, что для предотвращения засорения форсунок или трубочек полива осадками солей маточные насыщенные растворы получают с применением ультразвуковых колебаний, которые затем разделяют микрофильтрацией на загрязненный и чистый потоки. Загрязненный поток далее центрифугируют с выделением плотного грязевого осадка. Чистый насыщенный фильтрат выдерживают в охлаждаемых отстойниках для отделения избытка солей кристаллизацией. Система полива выполнена зонной, при которой разные растворы, в рамках общей рецептуры, подают к растению по своим собственным трубочкам. Для локального освещения и вентилирования выполнены подвижными фото- и вентблоки, передвигающиеся на подвесных тележках, которые могут использоваться для перемещения людей и оборудования. При обработке семян перед выращиванием рассады на семени формируют растворимую композитную оболочку, включающую помимо микроэлементов добавки веществ, улучшающих будущий фотосинтез в листьях. На осветительной аппаратуре создают цветовое покрытие, оптимизирующее спектральные характеристики освещения для данного вида растений. Тепличный комплекс обеспечивает высокую степень автоматизации и механизации работ при стандартных системах регулирования микроклимата и существующих системах приготовления и подачи питательных растворов, экономичен и производителен. 3 ил.

Формула изобретения RU 2 581 876 C2

Тепличный процесс для выращивания растений с применением питательных растворов, характеризующийся тем, что для предотвращения засорения форсунок или трубочек полива осадками солей маточные насыщенные растворы получают с применением ультразвуковых колебаний, которые затем разделяют микрофильтрацией на загрязненный и чистый потоки, причем загрязненный поток далее центрифугируют с выделением плотного грязевого осадка, а чистый насыщенный фильтрат выдерживают в охлаждаемых отстойниках для отделения избытка солей кристаллизацией, причем система полива выполнена зонной, при которой разные растворы, в рамках общей рецептуры, подаются к растению по своим собственным трубочкам, при этом для локального освещения и вентилирования выполнены подвижными фото- и вентблоки, передвигающиеся на подвесных тележках, которые могут использоваться для перемещения людей и оборудования, причем при обработке семян перед выращиванием рассады на семени формируют растворимую композитную оболочку, включающую помимо микроэлементов добавки веществ, улучшающих будущий фотосинтез в листьях, при этом на осветительной аппаратуре создают цветовое покрытие, оптимизирующее спектральные характеристики освещения для данного вида растений.

Документы, цитированные в отчете о поиске Патент 2016 года RU2581876C2

СИСТЕМА ПРИГОТОВЛЕНИЯ И ПОДАЧИ ПИТАТЕЛЬНОГО РАСТВОРА В ТЕПЛИЦЕ 1992
  • Шарупич В.П.
RU2040889C1
РАСТВОРНЫЙ УЗЕЛ ДЛЯ ПРИГОТОВЛЕНИЯ И ПОДАЧИ ПИТАТЕЛЬНОГО РАСТВОРА 1992
  • Синяков Анатолий Леонидович[By]
  • Герасимович Леонид Степанович[By]
  • Липницкий Леонид Александрович[By]
  • Тарасенко Валентин Семенович[By]
  • Сдобин Евгений Викторович[By]
  • Коротинский Виктор Андреевич[By]
RU2038007C1
RU 2056094 C1, 20.03.1996
US 20140148341 A1, 29.05.2014.

RU 2 581 876 C2

Авторы

Антуфьев Игорь Александрович

Алексеева Маргарита Игоревна

Попова Софья Игоревна

Попов Сергей Анатольевич

Даты

2016-04-20Публикация

2014-09-17Подача