УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБЫ ГАЗА В ВЫСОКОЭНТАЛЬПИЙНЫХ УСТАНОВКАХ КРАТКОВРЕМЕННОГО ДЕЙСТВИЯ И СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ГАЗА С ИСПОЛЬЗОВАНИЕМ ЭТОГО УСТРОЙСТВА Российский патент 2016 года по МПК G01N1/22 G01M9/06 

Описание патента на изобретение RU2582805C9

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия.

Для ряда работ, выполняемых, например, в импульсных высокоэнтальпийных установках, требуется знать состав рабочего газа, обтекающего модели.

Так, при исследованиях газодинамических моделей с горением возникает вопрос о содержании в обтекающем модель воздухе кислорода, поскольку при электродуговом нагреве в форкамере уменьшается его доля за счет окисления элементов конструкции. При использовании химической энергии для увеличения энергетики установки требуется знать, насколько полно завершены химические реакции в форкамере и какой состав имеет рабочий газ на срезе сопла. При исследованиях различных схем прямоточных двигателей с тепломассоподводом желательно знать состав продуктов горения на выходе из сопла и др.

Кроме того, имея экспериментальные данные по расходу газа в рабочей части высокоэнтальпийной аэродинамической трубы кратковременного действия (продолжительность рабочего режима ~100 мс) и сопоставляя их с расчетными результатами, можно повысить надежность и точность проводимых исследований.

Известны устройства для получения информации о составе газа путем отбора пробы из движущейся со сверхзвуковой скоростью потенциально химически активной среды с помощью расширяющегося канала для замораживания пробы и дальнейшего ее химического анализа (Рожицкий С.И., Строкин В.Н. К методике отбора газовой пробы из сверхзвукового реагирующего потока. // Физика горения и взрыва. 1974. Т. 10, №4. С. 492-498) [1]; (Авторское свидетельство СССР №463029, кл. G01n 1/22,1972 г.) [2].

Недостатками этих устройств является невозможность их использования в аэродинамических установках с кратковременными рабочими режимами ~100 мс по следующим причинам:

- при продолжительности работы аэродинамической трубы ~100 мс время на отбор газа и запирание его в баллоне составляет несколько десятков миллисекунд, чего явно недостаточно для использования этих устройств;

- для привязки пробы к изменяющимся параметрам потока требуется жесткая синхронизация работы системы отбора с режимом установки;

- объем баллона, в который набирается проба, не является произвольным, а определяется компромиссом между давлением в баллоне, которое должно быть много меньше полного давления в канале пробоотборника для предотвращения запирания и срыва втекания в пробоотборник, временем отбора и минимально необходимой для химического анализа массой газа в баллоне;

- из-за малого времени режима давление отобранной пробы в баллоне получается значительно меньше атмосферного, что создает серьезные проблемы при отборе пробы газа.

При испытаниях в высокоэнтальпийных установках кратковременного действия для определения параметров рабочего газа, обтекающего модель, имеется ограниченное количество измеряемых величин. Этот ограниченный набор величин не позволяет экспериментальным путем определить требуемый набор параметров потока, таких как скорость, статические давление и температура и т.д. Приходится использовать ряд допущений, которые совместно с измеренными величинами позволяют создать замкнутую систему уравнений, обеспечивающую получение в рабочей части расчетных параметров набегающего на модель газа.

Правильность такого подхода к определению параметров рабочего газа в рабочей части (верификация метода определения параметров) проверяется в специальных опытах сравнением какой-либо измеренной характеристики потока с ее расчетным значением. Отклонение расчетной характеристики от ее измеренной величины служит оценкой точности определения параметров рабочего газа в рабочей части установки. Такой характеристикой может являться масса газа, протекшего в рабочей части установки через поперечное сечение F0 за фиксируемое время.

Известно устройство, позволяющие в специфических условиях высокоэнтальпийной установки кратковременного действия определять расход газообразной среды, проходящей через поперечное сечение канала (Королев А.С., Бошенятов Б.В., Друкер И.Г., Затолока В.В. Импульсные трубы в аэродинамических исследованиях. Новосибирск. Наука, Сибирское отделение. 1978. 80 с.) [3], с. 60.

Принципиальными недостатками этого устройства являются следующие.

- необходимость учитывать реальные свойства газа, связанные с высокими температурой и давлением;

- необходимость понижения температуры газа перед мерным соплом с целью уменьшения динамической составляющей погрешности в показаниях термопар, что заставляет устанавливать перед мерным соплом теплообменник-холодильник;

- инерционность в показаниях термопар, измеряющих температуру газа перед мерным соплом, что ставит под сомнение правильность измерения температуры и, следовательно, приводит к грубым ошибкам в измерении расхода.

Наиболее близким, принятым за прототип, является устройство, описанное в статье (Шумский В.В., Ярославцев М.И. Состав рабочего тела в рабочей части высокоэнтальпийной установки // ФГВ. 2012. Т. 48, №1. С. 28-37) [4], для отбора газа из рабочей части импульсной трубы, учитывающее перечисленные выше особенности режима высокоэнтальпийных аэродинамических труб, позволяющее отбирать газ из сверх- или гиперзвукового потока для последующего химического анализа.

Устройство содержит герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом, пироклапан, в корпусе которого размещены поршень, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда и выполнено перепускное отверстие в объем для сбора, хранения и отбора из него пробы газа.

Недостатки устройства, изложенного в [4], в случае отбора газа для химического анализа заключаются в следующем:

- при температурах торможения газового потока перед отверстием пробоотборника, больших 2000 К, падение температуры отобранной пробы в сверхзвуковой части пробоотборника (понижение статической температуры при расширении отобранной пробы, теплоотвод в стенки канала) недостаточно для гарантированного отсутствия в каналах устройства вторичных химических реакций;

- значительная часть падения температуры должна происходить при дозвуковой скорости на длине от места перехода сверхзвукового потока в дозвуковой (от псевдоскачка до камеры). В данном устройстве теплоотвод осуществляется только в стенки канала, чего недостаточно;

- большая длина каналов устройства от начала псевдоскачка до баллона не обеспечивает при больших температурах отобранной пробы требования, чтобы время прохождения пробой этой длины было меньше времени индукции возможных вторичных реакций;

- узел подрыва пироклапана находится на лобовой части устройства, что при больших температурах и давлениях газового потока вызывает сбои в работе из-за больших тепловых потоков в районе подключения управляющего проводника к пироклапану.

- наличие одного (положительного) поджигающего электрода (корпус устройства - минус) приводит к появлению электроэррозии на поверхности поршня клапана и корпусе устройства, что нарушает герметичность баллона с отобранным газом.

Задачей изобретения является расширение экспериментальных возможностей устройства за счет увеличения предельных температур и давлений, при которых устройство может применяться в высокоэнтальпийных установках кратковременного действия как устройство для взятия пробы газа с целью определения состава, так и измерения расхода газа.

Поставленная задача достигается тем, что устройство для отбора пробы газа и измерения расхода в высокоэнтальпийных установках кратковременного действия содержит собственно пробоотборник, пироклапан, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда, перепускное отверстие в баллон для сбора и хранения пробы газа.

Новым является то, что в канале пробоотборника установлена теплопроводная вставка с развитой площадью поверхностей, а баллон для сбора и хранения газа снабжен поршнем, благодаря перемещению которого можно изменять давление в баллоне, при этом узел подключения управляющих высоковольтных проводов для подрыва порохового заряда установлен в аэродинамической тени пироклапана и дополнительно снабжен двухэлектродной системой, а в корпусе пироклапана выполнено дренажное отверстие для сброса давления пороховых газов.

Это же устройство позволяет осуществить способ определения расхода газа путем сравнения массы газа (Gб)э, наполнявшего в экспериментах в течение времени tб камеру известного объема, со значением массы (Gб)р, которая должна поступать в камеру за время tб при расчетных значениях скорости Wн и удельного объема vн газа в рабочей части установки. Тем самым косвенно определяется расход газа через трубку с площадью поперечного сечения F.

Технический результат, достигаемый при этом, - увеличение предельных температуры и давления, при которых устройство может применяться в высокоэнтальпийных установках кратковременного действия, например в импульсных трубах, повышение достоверности отобранной пробы газа, наполнившей камеру, возможность одновременного измерения расхода.

Схема устройства для отбора пробы газа и измерения расхода в высокоэнтальпийных установках кратковременного действия приведена на чертеже.

Устройство включает в себя: насадок 1 пробоотборника с заостренной передней кромкой и расширяющимся внутренним каналом, пробоотборник 2, вставку 3 из материала с большой теплопроводностью (может быть выполнена из меди) и с развитой площадью внутренних поверхностей (пористой), корпус пироклапана 4, подпружиненный стопор 5 для фиксации поршня 6 пироклапана и дренажное отверстие 7 для сброса давления пороховых газов. Узел подключения управляющих высоковольтных проводов для передачи сигнала на подрыв порохового заряда 8 (пиросостав) установлен в аэродинамической тени за пироклапаном и содержит также поджигающую свечу 9, изолятор свечи 10 и два электрода 11. Дополнительный (отрицательный) электрод 11 обеспечивает контролируемый разряд между электродами, а не на поршень, как было в прототипе. На поверхности поршня и цилиндра после нескольких пусков появлялись следы электроэррозии и нарушалась герметичность системы. В настоящем варианте система не связана с землей. Объем для сбора, хранения и отбора из него пробы газа - баллон 12 содержит поршень 13, винт 14 перемещения поршня баллона, резиновую заглушку 15 для отбора пробы газа и датчик давления 16. Перепускное отверстие 17 между полостью пробоотборника 2 и баллоном 12 перекрывается поршнем 6 пироклапана.

Устройство, приведенное на чертеже, в режиме отбора пробы работает следующим образом.

Перед экспериментом устройство находится в исходном состоянии, как показано на чертеже. При подготовке аэродинамической трубы к пуску проводится вакуумирование газодинамического тракта трубы до давления 10-2 мм рт.ст. Вместе с газодинамическим трактом вакуумируются полости устройства для отбора пробы газа: канал пробоотборника 2, полость корпуса пироклапана 4, перепускное отверстие 17, баллон 12. Поршень 13 с помощью винта 14 отведен в крайнее правое положение и застопорен для предотвращения его смещения из-за разницы давления, действующего на торцы поршня после окончания пуска трубы и разгерметизации рабочей части установки.

После запуска трубы через отверстие d0 происходит натекание газа в пробоотборник. В процессе отбора газа с помощью скоростной видеосъемки контролируется форма скачка уплотнения на острой передней кромке отверстия d0. Сигнал на подрыв пироклапана подается через узел подключения управляющих высоковольтных проводов до момента появления отошедшего скачка уплотнения. Поэтому время подачи импульса на подрыв пироклапана контролируется дополнительно видеокамерой.

После сигнала на подрыв пироклапана из-за быстрого повышения давления в полости 8 поршень 6 через ~50-100 мкс закрывает герметично перепускное отверстие 17 пробоотборника 2, подпружиненный стопор 5 фиксирует поршень 6 в крайнем левом положении.

Таким образом, полость баллона 12 изолируется от газодинамического тракта трубы.

При определении расхода наполнившему баллон газу дают возможность остыть до комнатной температуры Тб. Затем измеряют давление в баллоне с помощью манометра или датчика давления 16. Зная величину объема V баллона 12 и перепускного отверстия 17, давление рб в полости баллона, время tб=tб2-tб1 пребывания в открытом состоянии перепускного отверстия 17, определяют массу газа, поступившего в баллон за время tб

(Gб)э=Vpб/(RTб),

где R - удельная газовая постоянная, tб1 - время начала наполнения баллона, tб2 - время окончания наполнения (срабатывание пироклапана после поступления сигнала на подрыв порохового заряда 8).

Расчетное значение массы, которая должна натечь в баллон за время tб, определяется из выражения

где Wн, vн - расчетные значения скорости и удельного объема в рабочей части установки, F0 - площадь входа в пробоотборник.

Величина δ=(Gб р-Gб э)/Gб э характеризует отклонение расчетных значений от экспериментальных и тем самым с точностью, определяемой δ, позволяет определять расход газа G=WнF/υн через площадь поперечного сечения F в рабочей части установки.

При отборе газа с целью определения состава, путем проведения в дальнейшем химического анализа, следует иметь ввиду, что на трех участках происходит замораживание пробы:

1) на участке l1 со сверх- или гиперзвуковой скоростью, на котором за счет теплоотдачи к холодным стенкам пробоотборника 2 происходит уменьшение температуры пробы;

2) на участке l2 с дозвуковой скоростью к развитым холодным поверхностям вставки 3;

3) к холодным стенкам баллона 12 после попадания пробы в баллон.

Общее время охлаждения пробы в процессе прохождения ее от входного отверстия d0 до баллона 12 не должно превышать времени индукции химической реакции, зависящего от давления и температуры в пробе. Этим временем индукции определяется выбор длин l1, l2 и необходимость сведения до минимума длины участка между собственно пробоотборником 2 и баллоном 12.

Заполнение баллона для отбора газа производится, как описано выше, после остывания отобранного газа до комнатной температуры, с помощью винта 14 производится перемещение поршня 13 влево, с целью повышения давления в полости баллона 12 несколько выше атмосферного. При этом давление в баллоне контролируется датчиком давления 16. После этого с помощью шприца прокалывается резиновая заглушка 15 и отбирается проба на химический анализ, что и обеспечивает предлагаемая конструкция пробоотборника газа.

Источники информации

1. Рожицкий С.И., Строкин В.Н. К методике отбора газовой пробы из сверхзвукового реагирующего потока. // Физика горения и взрыва. 1974. Т. 10, №4. С. 492-498.

2. Авторское свидетельство СССР №463029, кл. G01n 1/22, 1972 г.

3. Королев А.С, Бошенятов Б.В., Друкер И.Г., Затолока В.В. Импульсные трубы в аэродинамических исследованиях. Новосибирск. Наука, Сибирское отделение. 1978. 80 с.

4. Шумский В.В., Ярославцев М.И. Состав рабочего тела в рабочей части высокоэнтальпийной установки // ФГВ. 2012. Т. 48, №1. С. 28-37.

Похожие патенты RU2582805C9

название год авторы номер документа
Устройство для отбора проб газа 1981
  • Фролов Юрий Михайлович
  • Белгов Анатолий Алексеевич
SU981861A1
Импульсная аэродинамическая труба с электродуговым или комбинированным подогревом рабочего газа 2016
  • Ярославцев Михаил Иванович
  • Шумский Валентин Витальевич
RU2638087C1
Устройство для дистанционного отбора проб газа 1977
  • Абрамович Илья Александрович
  • Ситницкая Эсфирь Абрамовна
  • Эпштейн Вячеслав Самуилович
SU684377A1
ИМПУЛЬСНАЯ АЭРОДИНАМИЧЕСКАЯ ТРУБА 2010
  • Ярославцев Михаил Иванович
  • Фомин Василий Михайлович
  • Маслов Анатолий Александрович
  • Мещеряков Алексей Михайлович
  • Пузырев Лев Николаевич
  • Щумский Валентин Витальевич
  • Соколовский Андрей Сергеевич
RU2439523C1
Устройство для отбора проб газа из скважины 1981
  • Михальков Петр Васильевич
  • Тиняков Геннадий Федорович
SU976046A1
КОМПЛЕКС ДЛЯ ОТБОРА ПРОБ ГАЗА 2014
  • Шмаков Андрей Валентинович
  • Шмакова Татьяна Христиановна
RU2552267C1
Устройство для экспресс-оценки газового фактора нефтегазовых скважин в процессе отбора глубинных проб пластового флюида 2019
  • Давыдова Оксана Викторовна
  • Гуторов Юлий Андреевич
  • Воронова Евгения Владимировна
RU2701408C1
Устройство для отбора проб газа 1976
  • Михальков Петр Васильевич
  • Тиняков Геннадий Федорович
  • Диденко Сергей Павлович
SU578585A1
УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБЫ ГАЗА С ПРИМЕСЬЮ 1998
  • Поваров В.Г.
  • Степанов А.А.
RU2190840C2
УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБ ЖИДКОСТИ ИЗ СКВАЖИНЫ 2005
  • Мусин Камиль Мугаммарович
  • Страхов Дмитрий Витальевич
  • Зиятдинов Радик Зяузятович
  • Оснос Владимир Борисович
  • Бусаров Юрий Николаевич
RU2298097C1

Иллюстрации к изобретению RU 2 582 805 C9

Реферат патента 2016 года УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБЫ ГАЗА В ВЫСОКОЭНТАЛЬПИЙНЫХ УСТАНОВКАХ КРАТКОВРЕМЕННОГО ДЕЙСТВИЯ И СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ГАЗА С ИСПОЛЬЗОВАНИЕМ ЭТОГО УСТРОЙСТВА

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом. Устройство включает также пироклапан, в корпусе которого размещены поршень клапана, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда и выполнено перепускное отверстие в баллон для сбора и хранения пробы газа. Баллон для сбора пробы снабжен поршнем, а в канале пробоотборника установлена теплопроводная вставка с развитой площадью внутренних поверхностей. При этом узел подключения управляющих высоковольтных проводов для подрыва порохового заряда установлен в аэродинамической тени пироклапана и дополнительно снабжен двухэлектродной системой, а в корпусе пироклапана выполнено дренажное отверстие для сброса давления пороховых газов. Способ определения расхода газа с использованием данного устройства заключается в том, что проводят вакуумирование газодинамического тракта и полостей устройства до давления 10-2 мм рт.ст. и через перепускное отверстие пробоотборника заполняют газом баллон для отбора пробы. При этом поршень баллона стопорят в крайнем правом положении, а затем герметично закрывают перепускное отверстие. Наполнившему баллон газу дают возможность остыть до комнатной температуры Тб, измеряют давление в баллоне с помощью манометра или датчика давления. Зная величину объема V баллона и перепускного отверстия, давление рб в полости баллона, время tб = tб2 - tб1 пребывания в открытом состоянии перепускного отверстия, определяют массу газа (Gб)э, поступившего в баллон за время tб

(Gб)э=Vpб/(RTб),

где R - удельная газовая постоянная, tб1, tб2 - время начала и окончания наполнения баллона, вычисляют расчетное значение массы, которая должна натечь в баллон за время tб. Изобретение обеспечивает повышение достоверности отобранной пробы газа, наполнившей баллон, а также обеспечивает возможность одновременного измерения расхода газа. 2 н. и 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 582 805 C9

1. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия, содержащее герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом, пироклапан, в корпусе которого размещены поршень клапана, узел подключения управляющих высоковольтных проводов для подрыва порохового заряда и выполнено перепускное отверстие в баллон для сбора и хранения пробы газа, отличающееся тем, что баллон для сбора пробы снабжен поршнем, в канале пробоотборника установлена теплопроводная вставка с развитой площадью внутренних поверхностей, при этом узел подключения управляющих высоковольтных проводов для подрыва порохового заряда установлен в аэродинамической тени пироклапана и дополнительно снабжен двухэлектродной системой, а в корпусе пироклапана выполнено дренажное отверстие для сброса давления пороховых газов.

2. Устройство по п. 1, отличающееся тем, что баллон сбора и хранения газа снабжен винтом перемещения поршня.

3. Способ определения расхода газа в высокоэнтальпийных установках кратковременного действия с использованием устройства по п. 1, отличающийся тем, что проводят вакуумирование газодинамического тракта и полостей устройства до давления 10-2 мм рт.ст., через перепускное отверстие пробоотборника заполняют газом баллон для отбора пробы, при этом поршень баллона стопорят в крайнем правом положении, затем герметично закрывают перепускное отверстие, наполнившему баллон газу дают возможность остыть до комнатной температуры Тб, измеряют давление в баллоне с помощью манометра или датчика давления, зная величину объема V баллона и перепускного отверстия, давление рб в полости баллона, время tб = tб2 - tб1 пребывания в открытом состоянии перепускного отверстия, определяют массу газа (Gб)э, поступившего в баллон за время tб
(Gб)э=Vpб/(RTб),
где R - удельная газовая постоянная, tб1, tб2 - время начала и окончания наполнения баллона, вычисляют расчетное значение массы, которая должна натечь в баллон за время tб.

Документы, цитированные в отчете о поиске Патент 2016 года RU2582805C9

Шумский В.В., ЯрославцевМ.И
"Состав рабочего тела в рабочей части высокоэнтальпийной установки", Физика горения и взрыва, 2012, т.48, N1,с.28-37
ИМПУЛЬСНАЯ АЭРОДИНАМИЧЕСКАЯ ТРУБА 2010
  • Ярославцев Михаил Иванович
  • Фомин Василий Михайлович
  • Маслов Анатолий Александрович
  • Мещеряков Алексей Михайлович
  • Пузырев Лев Николаевич
  • Щумский Валентин Витальевич
  • Соколовский Андрей Сергеевич
RU2439523C1
Импульсная аэродинамическая труба с криогенной откачкой рабочего газа и способ испытаний в ней 1988
  • Сидоров С.С.
  • Виноградов П.А.
  • Жохов В.А.
  • Прусов Б.В.
  • Чепель С.Л.
SU1577487A1
JPH 08178092 A, 12.07.1996
CN 102519704 A, 27.06.2012.

RU 2 582 805 C9

Авторы

Шумский Валентин Витальевич

Ярославцев Михаил Иванович

Даты

2016-04-27Публикация

2014-09-22Подача