БИПОЛЯРНАЯ ЯЧЕЙКА КООРДИНАТНОГО ФОТОПРИЕМНИКА - ДЕТЕКТОРА ИЗЛУЧЕНИЙ Российский патент 2016 года по МПК G01T1/24 H01L31/115 

Описание патента на изобретение RU2583857C1

Изобретение относится к полупроводниковым монолитным координатным фотоприемникам и детекторам радиационных частиц и излучений.

Известны ячейки (пиксели) для монолитных 2-мерных матриц детекторов, которые построены: на основе p-i-n-диода, который не обеспечивает усиления сигнала в пикселе и, следовательно, быстродействие и чувствительность детектора (1. D. Patti etal United States Patent № US 6,465,857,B1 Date Oct. 15.2002, US 006465857 B1), диодно-емкостной структуре, которая не обеспечивает быстродействие (2. I. Peric; «А novel monolithic pixelated particle detector implemented in high-voltage CMOS technology», Nucl. Inst. Meth. Band A 582, pp. 876-885, August 2007), DEPMOS - МОП транзисторе с управлением по подложке, которые имеют низкую крутизну и относительно высокий уровень шумов (3. J. Kemmer, G. Lutz: Nucl. Instrum. Methods A 273, 588-598 (1988)), на функционально-интегрированных БИ-МОП, n-МОП транзисторных структурах имеют нелинейность усиления при малом уровне сигнала (4. Интегральная Би-МОП ячейка детектора излучений (патент РФ №2383968 от 20.03.2006; 5. МОП диодная ячейка монолитного детектора излучений, патент РФ №2494497 от 21.07.2011).

Наиболее близкой по технической сущности является ячейка на биполярной транзисторной структуре для 2-мерной матрицы фотоприемника - детектора излучений, которая представлена в патенте (6. Интегральная ячейка детектора излучения на основе биполярного транзистора с сетчатой базой, патент РФ №2427942, опублик. 08.04.2010).

Данная электрическая схема и конструкция ячейки (пиксели) выбрана в качестве прототипа.

Данная ячейка на биполярной транзисторной структуре с сетчатой базой содержит полупроводниковую подложку, в которой расположена область коллектора 1-го типа проводимости, на которой имеется электрод коллектора, в области коллектора расположена область базы, 2-го типа проводимости, в области базы расположена область эмиттера 1-го типа проводимости, на которой расположен электрод эмиттера, отличающаяся тем, что область базы 2-го типа проводимости выполнена в виде сетки, при этом величины областей пространственного заряда, образованные p-n переходами коллектор - база, превышают расстояние между соседними линиями сетчатой базы.

Данная ячейка имеет относительно низкое напряжение пробоя (менее 70 В), что не позволяет достичь максимально возможных величин области пространственного заряда (ОПЗ), например, в кремниевой подложке, толщина которой составляет обычно 300-460 мкм, небольшая глубина ОПЗ не позволяет соответственно эффективно детектировать излучения, имеющие большую глубину проникновения в полупроводниковый материал подложки (например, рентгеновского или релятивистского электронного излучений). Кроме этого большая величина ОПЗ в коллекторном переходе транзистора существенно ограничивает его быстродействие.

Техническим результатом изобретения является повышение эффективности регистрации глубоко проникающих излучений и повышение быстродействия детектора излучений.

Технический результат достигается за счет:

- электрической схемы, которая содержит дополнительную шину положительного (отрицательного) напряжения питания, к которой подключен коллектор биполярного транзистора, дополнительную шину напряжения смещения, подключенную через резистор к базе 2-эмиттерного биполярного транзистора.

Данная электрическая схема реализуется с помощью оригинальной конструкции интегральной схемы, в которой функционально совмещены высоковольтный p-i-n-диод и низковольтный усиливающий ионизационный ток 2-эмиттерного биполярного транзистора.

- конструкции ячейки, в которой имеется дополнительная область 1-го типа проводимости, расположенная в области анода (катода) p-i-n-диода и базы 2-го типа проводимости, являющаяся областью коллектора 2-эмиттерного биполярного транзистора, на которой расположен электрод коллектора, подключенный к шине положительного (отрицательного) напряжения питания.

Изобретение поясняется приведенными чертежами:

- электрическая схема изобретения, приведенная на фиг. 1, содержит 2-эмиттерный n (р) биполярный транзистор Т1, база которого через резистор R подключена к шине напряжения смещения VСМ и аноду (катоду) диода, катод (анод) которого подсоединен к шине высокого положительного (отрицательного) напряжения питания +VDD, первый эмиттер транзистора подсоединен к адресной шине - X, второй эмиттер к адресной шине - Y, его коллектор подсоединен к шине положительного (отрицательного) напряжения питания VCC;

- конструкция изобретения показана на фиг. 2.

Ячейки 2-мерной матрицы содержат шину высокого положительного (отрицательного) напряжения питания +VDD, шину напряжения смещения VСМ, первую - X, и вторую - Y выходные ортогональные адресные шины, полупроводниковую подложку 1-го типа проводимости - 1, на нижней поверхности которой расположен сильно легированный слой 1-ого типа проводимости - 2, на котором расположен электрод подложки - 3, подсоединенный к шине высокого положительного (отрицательного) напряжения питания +VDD, а на верхней поверхности подложки расположены область 2-го типа проводимости - 4, являющаяся одновременно p (n) областью анода (катода) p-i-n-диода и областью базы 2-эмиттерного биполярного транзистора, на ней расположен электрод базы - 5, которая подсоединена к первому электроду - 6 резистора - 7, расположенного на диэлектрике - 8, второй электрод резистора - 9 подключен к шине напряжения смещения VСМ, в области базы расположены две сильнолегированные области n (p) типа проводимости первого - 10 и второго - 11 эмиттеров, соответствующими электродами - 12, 13 подключенные соответственно к первой - X и второй - Y выходным ортогональным адресным шинам, по границе ячейки расположена n+(p+) охранная область - 14, в области базы 2-го типа проводимости - 4 расположена дополнительная область коллектора - 15 2-эмиттерного биполярного транзистора, с расположенным на ней электродом коллектора - 16, соединенным с шиной положительного (отрицательного) напряжения питания VCC.

Пример конкретной технологической реализации изобретения

Двумерная матрица пиксель-ячеек детектора может быть выполнена по стандартной биполярной технологии, используемой при изготовлении интегральных схем, например по следующему технологическому маршруту:

а) формирование n+ - контактной области - 2 к пластине кремния - 1 сопротивлением ρv~5 кОм/см с ориентацией 100, например, диффузией фосфора в обратную сторону пластины;

б) проведение фотолитографии и формирование ионным легированием бора (дозой 4 мкКл и высокотемпературным отжигом 4 часа при температуре 1050°С), p-базы - 4 глубиной h=4 мкм;

в) проведение фотолитографии и формирование ионным легированием фосфора (дозой 0,5 мкКл), n-охранной области вокруг пиксели;

г) проведение термического окисления, толщина оксида h=0,8 мкм, и проведение фотолитографии мезаобластей;

д) проведение термического окисления открытой поверхности кремния, толщина оксида h=0,3 мкм, и проведение фотолитографии контактных окон эмиттера, базы, коллектора;

е) проведение фотолитографии и формирование области коллектора путем имплантации фосфора дозой 2,5 мкКл в его контактное окно, с последующей разгонкой на глубину h=2 мкм;

ж) осаждение поликремния и проведение по нему фотолитографии разводки;

з) проведение фотолитографии ионного легирования поликремния мышьяком дозой 1000 мкКл областей эмиттера и коллектора;

и) проведение фотолитографии ионного легирования поликремния бором дозой 300 мкКл области контакта к базе и резистору

к) проведение фотолитографии ионного легирования поликремния бором дозой 5 мкКл (резистора);

л) проведение термического отжига при температуре 1050°С 50 мин;

м) осаждение первого плазмохимического (низкотемпературного) оксида и проведение фотолитографии контактных окон к поликремнию, осаждение первого слоя алюминия;

н) проведение фотолитографии разводки (обтрава) алюминия первого уровня;

о) осаждение второго плазмохимического (низкотемпературного) оксида и проведение фотолитографии контактных окон к алюминию первого уровня, осаждение второго слоя алюминия;

п) проведение операции фотолитографии разводки (обтрава) второго алюминия.

Изготовленные по данной технологии тестовые n-p-n биполярные транзисторы имели пробивное напряжение Vкэ около 12 В, а p-i-n-диоды - пробивное напряжение Vпр свыше 250 В. Коэффициент усиления имел значения в пределах β=50-100.

Похожие патенты RU2583857C1

название год авторы номер документа
Интегральная схема быстродействующего матричного приемника оптических излучений 2015
  • Леготин Сергей Александрович
  • Мурашев Виктор Николаевич
  • Краснов Андрей Андреевич
  • Кузьмина Ксения Андреевна
  • Диденко Сергей Иванович
  • Омельченко Юлия Константиновна
  • Леготин Александр Николаевич
  • Яромский Валерий Петрович
  • Ельников Дмитрий Сергеевич
  • Бажуткина Светлана Петровна
  • Леготина Нина Геннадьевна
  • Носова Ольга Андреевна
  • Штыков Вячеслав Алексеевич
RU2617881C2
МОП ДИОДНАЯ ЯЧЕЙКА МОНОЛИТНОГО ДЕТЕКТОРА ИЗЛУЧЕНИЙ 2011
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Рябов Владимир Алексеевич
  • Яромский Валерий Петрович
  • Ельников Дмитрий Сергеевич
  • Барышников Федор Михайлович
RU2494497C2
МОНОЛИТНЫЙ БЫСТРОДЕЙСТВУЮЩИЙ КООРДИНАТНЫЙ ДЕТЕКТОР ИОНИЗИРУЮЩИХ ЧАСТИЦ 2013
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Диденко Сергей Иванович
  • Кольцов Геннадий Иосифович
  • Барышников Федор Михайлович
RU2532241C1
ЕМКОСТНАЯ МОП ДИОДНАЯ ЯЧЕЙКА ФОТОПРИЕМНИКА-ДЕТЕКТОРА ИЗЛУЧЕНИЙ 2014
  • Леготин Сергей Александрович
  • Мурашев Виктор Николаевич
RU2583955C1
ИНТЕГРАЛЬНАЯ ЯЧЕЙКА ДЕТЕКТОРА ИЗЛУЧЕНИЯ НА ОСНОВЕ БИПОЛЯРНОГО ТРАНЗИСТОРА С СЕТЧАТОЙ БАЗОЙ 2010
  • Мурашев Виктор Николаевич
  • Диденко Сергей Иванович
  • Леготин Сергей Александрович
  • Кобелева Светлана Петровна
  • Корольченко Алексей Сергеевич
  • Орлов Олег Михайлович
  • Коновалов Михаил Павлович
  • Волков Дмитрий Леонидович
RU2427942C1
ИНТЕГРАЛЬНАЯ БИ-МОП ЯЧЕЙКА ДЕТЕКТОРА ИЗЛУЧЕНИЙ 2006
  • Мурашев Виктор Николаевич
RU2383968C2
ИНТЕГРАЛЬНАЯ СХЕМА СИЛОВОГО БИПОЛЯРНО-ПОЛЕВОГО ТРАНЗИСТОРА 2015
  • Леготин Сергей Александрович
  • Мурашев Виктор Николаевич
  • Краснов Андрей Андреевич
  • Диденко Сергей Иванович
  • Коновалов Михаил Павлович
  • Леготин Александр Николаевич
  • Яромский Валерий Петрович
  • Ельников Дмитрий Сергеевич
  • Бажуткина Светлана Петровна
  • Леготина Нина Геннадьевна
  • Носова Ольга Андреевна
  • Мурашева Людмила Павловна
  • Штыков Вячеслав Алексеевич
RU2585880C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ С ПРИСТЕНОЧНЫМИ p-n-ПЕРЕХОДАМИ 1981
  • Манжа Н.М.
  • Кокин В.Н.
  • Чистяков Ю.Д.
  • Патюков С.И.
SU1072666A1
ФУНКЦИОНАЛЬНО-ИНТЕГРИРОВАННАЯ ЯЧЕЙКА ФОТОЧУВСТВИТЕЛЬНОЙ МАТРИЦЫ 2012
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Барышников Федор Михайлович
  • Диденко Сергей Иванович
  • Приходько Павел Сергеевич
RU2517917C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОВОЛЬТНОГО БИПОЛЯРНОГО ТРАНЗИСТОРА С ИЗОЛИРОВАННЫМ ЗАТВОРОМ 2009
  • Громов Владимир Иванович
  • Губарев Виталий Николаевич
  • Лебедев Александр Садофьевич
  • Михеев Сергей Владимирович
  • Потапчук Владимир Александрович
  • Сурма Алексей Маратович
RU2420829C1

Иллюстрации к изобретению RU 2 583 857 C1

Реферат патента 2016 года БИПОЛЯРНАЯ ЯЧЕЙКА КООРДИНАТНОГО ФОТОПРИЕМНИКА - ДЕТЕКТОРА ИЗЛУЧЕНИЙ

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника - детектора излучений может использоваться в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности и контроля рельефа местности, оптических линий связи. Технический результат достигается за счет применения новой электрической схемы, в которой имеется собирающий ионизационный ток p-i-n-диод, а также 2-эмиттерный биполярный n-p-n (p-n-p)транзистор, первый эмиттер которого подключен соответственно к первой выходной адресной шине, а второй - ко второй выходной адресной шине, а база биполярного транзистора через резистор подключена к шине напряжения смещения, а коллектор - к шине питания. При этом данная электрическая схема реализуется в конструкции интегральной схемы, в которой функционально совмещены высоковольтный p-i-n-диод и низковольтный усиливающий ионизационный ток биполярный транзистор. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 583 857 C1

1. Биполярная ячейка, которая содержит шину высокого положительного (отрицательного) напряжения питания, первую и вторую выходные ортогональные адресные шины, 2-эмиттерный биполярный n-p-n (p-n-p) транзистор, первый эмиттер которого подключен соответственно к первой выходной адресной шине, а второй - ко второй выходной адресной шине, отличающаяся тем, что дополнительно содержит шину напряжения смещения, которая через резистор подключена к базе 2-эмиттерного биполярного транзистора, p-i-n-диод, катод (анод) которого соединен с шиной высокого положительного (отрицательного) напряжения питания, анод (катод) - с базой 2-эмиттерного биполярного транзистора, а коллектор - с дополнительной шиной положительного (отрицательного) напряжения.

2. Конструкция биполярной ячейки содержит шины высокого положительного (отрицательного) напряжения питания, первую и вторую выходные ортогональные адресные шины, полупроводниковую подложку 1-го типа проводимости, на нижней поверхности которой расположен сильно легированный слой 1-го типа проводимости, на котором расположен электрод подложки, подсоединенный к шине высокого положительного (отрицательного) напряжения питания, а на верхней поверхности подложки расположены диэлектрик и область 2-го типа проводимости, являющаяся одновременно p (n) областью анода (катода) p-i-n-диода и областью базы 2-эмиттерного биполярного транзистора, которая подсоединена через резистор, расположенный на диэлектрике, к шине напряжения смещения, в области базы расположены сильнолегированные области n (p) типа проводимости первого и второго эмиттеров, подключенные соответственно к первой и второй выходным ортогональным адресным шинам, отличающаяся тем, что в области анода (катода) p-i-n-диода и базы 2-го типа проводимости расположена дополнительная область 1-го типа проводимости, являющаяся одновременно областью коллектора 2-эмиттерного биполярного транзистора, на которой расположен электрод коллектора, подключенный к шине положительного (отрицательного) напряжения питания, а дополнительная шина напряжения смещения через резистор соединена с базой транзистора и шиной напряжения смещения.

Документы, цитированные в отчете о поиске Патент 2016 года RU2583857C1

ИНТЕГРАЛЬНАЯ ЯЧЕЙКА ДЕТЕКТОРА ИЗЛУЧЕНИЯ НА ОСНОВЕ БИПОЛЯРНОГО ТРАНЗИСТОРА С СЕТЧАТОЙ БАЗОЙ 2010
  • Мурашев Виктор Николаевич
  • Диденко Сергей Иванович
  • Леготин Сергей Александрович
  • Кобелева Светлана Петровна
  • Корольченко Алексей Сергеевич
  • Орлов Олег Михайлович
  • Коновалов Михаил Павлович
  • Волков Дмитрий Леонидович
RU2427942C1
ИНТЕГРАЛЬНАЯ БИ-МОП ЯЧЕЙКА ДЕТЕКТОРА ИЗЛУЧЕНИЙ 2006
  • Мурашев Виктор Николаевич
RU2383968C2
МОП ДИОДНАЯ ЯЧЕЙКА МОНОЛИТНОГО ДЕТЕКТОРА ИЗЛУЧЕНИЙ 2011
  • Мурашев Виктор Николаевич
  • Леготин Сергей Александрович
  • Рябов Владимир Алексеевич
  • Яромский Валерий Петрович
  • Ельников Дмитрий Сергеевич
  • Барышников Федор Михайлович
RU2494497C2
КООРДИНАТНО-ЧУВСТВИТЕЛЬНЫЙ ДЕТЕКТОР (ВАРИАНТЫ) 1998
  • Мелешко Е.А.
  • Мурашев В.Н.
  • Павлов Д.В.
  • Тарабрин Ю.А.
  • Яковлев Г.В.
RU2133524C1
RU 2002118855 A, 10.03.2004
US 6465857 B1, 15.10.2002
US 5847422 A, 08.12.1998.

RU 2 583 857 C1

Авторы

Леготин Сергей Александрович

Мурашев Виктор Николаевич

Диденко Сергей Иванович

Кузьмина Ксения Андреевна

Борзых Ирина Вячеславовна

Рабинович Олег Игоревич

Яромский Валерий Петрович

Бажуткина Светлана Петровна

Носова Ольга Андреевна

Мурашева Людмила Павловна

Штыков Вячеслав Алексеевич

Даты

2016-05-10Публикация

2014-11-10Подача