Изобретение относится к области электронной техники, в частности к замедляющим системам для мощных СВЧ приборов с длительным взаимодействием.
Наиболее близкой по технической сущности является замедляющая система (патент РФ №2136075: Замедляющая система типа «Разрезное кольцо - спиральная перемычка». Приоритет от 26.02.1997 г. автора А.П. Помазкова, МПК: H01J 23/24, опубл. 27.08.1999 г. Бюл. №24), содержащая два коаксиально расположенных проводника, внешний из которых выполнен в виде цилиндрического корпуса, а внутренний - в виде периодической последовательности разрезных колец одного диаметра, расположенных в плоскостях, перпендикулярных продольной оси замедляющей системы, и соединенных спиральными перемычками, при этом каждая из перемычек соединена с концом предыдущего и началом последующего колец.
Однако такая замедляющая система в большей степени сохраняет свойства спиральной замедляющей системы, которая в основном используется в СВЧ приборах длинноволнового диапазона, что ограничивает ее практическое использование. При увеличении рабочей частоты прибора и сохранении высоких электродинамических характеристик необходимо уменьшать диаметр разрезного кольца, что в свою очередь увеличивает оседание электронов на нее и усложняет фокусировку электронного пучка в целом. Кроме того, в нижней части сантиметрового диапазона замедляющая система имеет низкие значения сопротивления связи, что уменьшает эффективность взаимодействия электронного пучка с электромагнитным полем.
Задача, на решение которой направлено заявляемое изобретение, заключается в создании замедляющей системы с широкой полосой пропускания и с высокими значениями сопротивления связи во всем частотном диапазоне при постоянных поперечных размерах.
Технические результаты, на достижение которых направлено заявляемое изобретение, заключаются в расширении полосы пропускания, увеличении сопротивления связи и расширении функциональных возможностей.
Данные технические результаты достигаются тем, что в замедляющей системе, содержащей металлический цилиндрический корпус, соосно которому установлен внутренний проводник в виде периодической последовательности разрезных колец одинакового диаметра, расположенных в плоскостях, перпендикулярных продольной оси замедляющей системы и соединенных перемычками, новым является то, что концы каждого последующего разрезного кольца смещены относительно соответствующих концов предыдущего разрезного кольца на угол αN, величина которого выбрана из соотношения:
,
где N=1, 2, 3… - число разрезных колец на периоде замедляющей системы. При этом концы предыдущего разрезного кольца замкнуты на последующее разрезное кольцо с помощью соответствующих перемычек, расположенных параллельно продольной оси замедляющей системы.
При таком построении замедляющей системы коэффициент замедления фазовой скорости определяется величиной угла αN, а ширина полосы пропускания и сопротивление связи длиной разрезного кольца l.
Таким образом, за счет изменения длины разрезного кольца l и угла αN можно применять данную замедляющую систему в различных диапазонах частот при фиксированном радиусе разрезного кольца r. Различные варианты смещения концов каждого последующего разрезного кольца относительно концов предыдущего разрезного кольца на определенный угол αN и использование последовательности разрезных колец с различной длиной l в пределах периода позволяет создавать дисперсионные характеристики замедляющей системы с требуемой кривизной в различных частотных диапазонах, что расширяет функциональные возможности. Кроме того, данная замедляющая система в сантиметровом диапазоне длин волн имеет наибольшие поперечные размеры пролетного канала по сравнению с традиционно используемыми в данном диапазоне структурами (например, цепочка связанных резонаторов). Это позволяет уменьшить оседание электронов на замедляющую систему, упростить процесс фокусировки электронного пучка в пролетном канале и использовать электронные пучки с различной поперечной геометрией.
На фиг. 1, фиг. 2 и фиг. 3 представлены частные случаи реализации конструкции замедляющей системы при N=1, N=2 и N=4 соответственно, т.е. когда концы каждого последующего разрезного кольца смещены относительно концов предыдущего разрезного кольца на угол α1=360°, α2=180° и α4=90° соответственно. На фиг. 4 представлены зависимости коэффициента замедления фазовой скорости от нормированной частоты нулевой пространственной гармоники для случаев α1=360°, α2=180° и α4=90° соответственно. На фиг. 5 представлены зависимости сопротивления связи от нормированной частоты нулевой пространственной гармоники при изменении длины разрезного кольца l для случая N=2 (α2=180°).
Замедляющая система (фиг. 1, фиг. 2, фиг. 3) содержит внешний цилиндрический металлический корпус 1, соосно которому установлен внутренний проводник в виде периодической последовательности разрезных колец 2 одинакового диаметра, образующих пролетный канал цилиндрической формы. Разрезные кольца расположены в плоскостях, перпендикулярных продольной оси замедляющей системы. Концы каждого предыдущего разрезного кольца замкнуты на последующее разрезное кольцо с помощью двух перемычек 3, расположенных параллельно продольной оси замедляющей системы.
Концы каждого последующего разрезного кольца смещены относительно концов предыдущего разрезного кольца на угол α1=360° (фиг. 1).
Концы каждого последующего разрезного кольца смещены относительно концов предыдущего разрезного кольца на угол α2=180° (фиг. 2).
Концы каждого последующего разрезного кольца смещены относительно концов предыдущего разрезного кольца на угол α4=90° (фиг. 3).
Для закрепления разрезных колец 2 соосно внутри цилиндрического корпуса 1 могут быть использованы диэлектрические опоры как круглой, так и прямоугольной формы (см., например, Силин Р.А. Периодические волноводы. М.: ФАЗИС, 2002. С. 80).
Замедляющая система работает следующим образом.
В СВЧ приборе через устройство ввода энергии (на фиг. 1, 2 и 3 не показано) на вход замедляющей системы подается подлежащий усилению внешний СВЧ сигнал со спектром, находящимся в полосе пропускания замедляющей системы. Усиление бегущих вдоль замедляющей системы электромагнитных волн происходит за счет их взаимодействия с трубчатым или цилиндрическим электронным потоком, проходящим внутри последовательности разрезных колец со скоростью, приблизительно равной фазовой скорости замедленной волны.
Требуемые коэффициент замедления фазовой скорости и ширина полосы пропускания СВЧ прибора определяются дисперсионной характеристикой замедляющей системы, которая в свою очередь определяется длиной l разрезного кольца 2 и различными вариантами смещения перемычек 3 относительно друг друга (фиг. 1, фиг. 2, фиг. 3). На фиг. 4 представлены зависимости коэффициента замедления фазовой скорости от нормированной частоты нулевой пространственной гармоники для случаев α1=360°, α2=180° и α4=90° соответственно. Согласно представленным зависимостям возможны широкие изменения коэффициента замедления фазовой скорости в пределах полосы пропускания при постоянных поперечных размерах разрезных колец замедляющей системы. На фиг. 5 представлены зависимости сопротивления связи от нормированной частоты нулевой пространственной гармоники при изменении длины разрезного кольца l для случая N=2 (α2=180°). Из анализа кривых видно, что предлагаемая замедляющая система позволяет увеличить значения сопротивления связи и расширить частотный диапазон при постоянных поперечных размерах разрезных колец замедляющей системы.
Длина замедляющей системы определяется положением максимума амплитудной характеристики СВЧ прибора. Вывод СВЧ энергии из замедляющей системы осуществляется с помощью выходного устройства (на фиг. 1, 2 и 3 не показано).
название | год | авторы | номер документа |
---|---|---|---|
ЗАМЕДЛЯЮЩАЯ СИСТЕМА | 2016 |
|
RU2648235C1 |
ЗАМЕДЛЯЮЩАЯ СИСТЕМА ТИПА "РАЗРЕЗНОЕ КОЛЬЦО - СПИРАЛЬНАЯ ПЕРЕМЫЧКА" | 1997 |
|
RU2136075C1 |
ЗАМЕДЛЯЮЩАЯ СИСТЕМА | 2014 |
|
RU2576977C2 |
ШИРОКОПОЛОСНОЕ СОГЛАСУЮЩЕЕ УСТРОЙСТВО ЗАМЕДЛЯЮЩЕЙ СИСТЕМЫ | 2018 |
|
RU2684428C1 |
ЗАМЕДЛЯЮЩАЯ СИСТЕМА | 2009 |
|
RU2395131C1 |
НЕОДНОРОДНАЯ ЗАМЕДЛЯЮЩАЯ СИСТЕМА | 2006 |
|
RU2325723C2 |
СЕКЦИОНИРОВАННАЯ ЗАМЕДЛЯЮЩАЯ СИСТЕМА ШТЫРЕВОГО ТИПА ЛАМПЫ БЕГУЩЕЙ ВОЛНЫ | 2005 |
|
RU2297687C1 |
СВЕРХВЫСОКОЧАСТОТНЫЙ ПРИБОР С ЗАМЕДЛЯЮЩЕЙ СИСТЕМОЙ "КЛЕВЕРНЫЙ ЛИСТ" | 2001 |
|
RU2211501C2 |
ЗАМЕДЛЯЮЩАЯ СИСТЕМА | 2010 |
|
RU2453945C1 |
ЗАМЕДЛЯЮЩАЯ СИСТЕМА ЛАМПЫ БЕГУЩЕЙ ВОЛНЫ | 2004 |
|
RU2263376C1 |
Изобретение относится к электронной технике, в частности к замедляющим системам для СВЧ приборов с длительным взаимодействием. Технический результат - расширение полосы пропускания, увеличение сопротивления связи и расширение функциональных возможностей. Замедляющая система содержит металлический цилиндрический корпус, соосно которому установлен внутренний проводник в виде периодической последовательности разрезных колец одинакового диаметра. Концы каждого последующего разрезного кольца замкнуты на предыдущее разрезное кольцо с помощью двух перемычек, расположенных параллельно продольной оси замедляющей системы. При этом концы каждого последующего разрезного кольца смещены относительно соответствующих концов предыдущего разрезного кольца на угол αN, величина которого выбрана из соотношения:
,
где N=1, 2, 3… - число разрезных колец на периоде замедляющей системы. 5 ил.
Замедляющая система, содержащая металлический цилиндрический корпус, соосно которому установлен внутренний проводник в виде периодической последовательности разрезных колец одинакового диаметра, расположенных в плоскостях, перпендикулярных продольной оси замедляющей системы и соединенных перемычками, отличающаяся тем, что концы каждого последующего разрезного кольца смещены относительно соответствующих концов предыдущего разрезного кольца на угол αN, величина которого выбрана из соотношения:
где N=1, 2, 3… - число разрезных колец на периоде замедляющей системы, при этом концы предыдущего разрезного кольца замкнуты на последующее кольцо с помощью соответствующих перемычек, расположенных параллельно продольной оси замедляющей системы.
ЗАМЕДЛЯЮЩАЯ СИСТЕМА ТИПА "РАЗРЕЗНОЕ КОЛЬЦО - СПИРАЛЬНАЯ ПЕРЕМЫЧКА" | 1997 |
|
RU2136075C1 |
ЗАМЕДЛЯЮЩАЯ СИСТЕМА ЛАМПЫ БЕГУЩЕЙ ВОЛНЫ | 2003 |
|
RU2263375C2 |
ЗАМЕЩЕННЫЕ СУЛЬФОНИЛАМИНОМЕТИЛБЕНЗОЙНЫЕ КИСЛОТЫ (ПРОИЗВОДНЫЕ) И СПОСОБ ИХ ПОЛУЧЕНИЯ (ВАРИАНТЫ) | 2001 |
|
RU2293080C2 |
US 2012133280A1, 31.05.2012 | |||
US 6049249A1, 11.04.2000. |
Авторы
Даты
2016-06-10—Публикация
2015-02-16—Подача