Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров резонансным методом, т.е. путем возбуждения в ледяном покрове резонансных изгибно-гравитационных волн (ИГВ) (1. Козин В.М. Резонансный метод разрушения ледяного покрова. Изобретения и эксперименты. - М.: Издательство «Академия Естествознания». 2007. - 355 с. ISBN 978-5-91327-017-7).
Известно техническое решение (2. RU2240252 С2, 28.02.2002), в котором предлагается разрушать ледяной покров подводным судном за счет создания от вращения крыльчатки, расположенной в верхней части корпуса судна, области повышенного давления под возникающей вершиной ИГВ.
Недостатками этого решения являются: наличие на корпусе судна выступающей части в виде крыльчатки, увеличивающей сопротивление воды и, вследствие этого, уменьшающей скорость его хода; громоздкость конструкции крыльчатки, выходящей за габариты корпуса; низкая работоспособность решения из-за гидродинамического несовершенства его осуществления (отсутствие целенаправленного, т.е. фокусированного, воздействия генерируемых гидродинамических сил на вершину ИГВ) и, соответственно, недостаточная высота возбуждаемых ИГВ.
Сущность изобретения заключается в разработке устройства, установленного в корпусе судна и увеличивающего высоту ИГВ, возбуждаемых при движении судна под ледяным покровом.
Технический результат, получаемый при осуществлении изобретения, заключается в увеличении толщины разрушаемого льда.
Существенные признаки, характеризующие изобретение.
Ограничительные: устройство для разрушения ледяного покрова, состоящее из подводного судна, способного при движении под ледяным покровом возбуждать в нем резонансные изгибно-гравитационные волны и создающего с помощью вращающейся крыльчатки, расположенной в верхней части корпуса судна, область повышенного давления под ледяным покровом в месте расположения вершины изгибно-гравитационной волны.
Отличительные: на судне в выполненных между его прочным и легким корпусами водопроточных каналах установлены две крыльчатки, поперечные сечения которых расположены перпендикулярно продольной оси судна, они расположены друг за другом и имеют в верхних частях открытые участки, крыльчатки выполнены с возможностью вращаться в противоположных направлениях, а лопатки крыльчаток в момент окончания прохождения ими открытых участков каналов - отклоняться, т.е. прижиматься к внутренней поверхности крыльчаток, на время, равное времени подхода к закрытым участкам очередных лопаток, после чего возвращаться в исходное положение, крыльчатки также имеют возможность периодически с частотой резонансных изгибно-гравитационных волн начинать и прекращать свое вращение в течение времени, равного полупериоду этих волн, лопатки отогнуты в направлениях, противоположных направлениям вращения крыльчаток.
Общеизвестно, что при вращательном движении среды на ее массу неизбежно будут действовать центробежные силы. Эту очевидную закономерность можно использовать для повышения эффективности разрушения ледяного покрова резонансным методом с помощью предложенного устройства. Для этого эти силы следует направить под вершину возбуждаемых ИГВ, что повысит в этой области гидродинамическое давление, т.е. увеличит высоту ИГВ.
Известно (3. Лойцянский Л.Г. Механика жидкости и газа. - М.: Дрофа. 2003. - 842 с.), что при взаимодействии потоков жидкости с различными скоростями на границе их раздела возникает пограничный слой, в пределах толщины которого из-за вязкости жидкости скорости в потоках резко изменяются в поперечных к ним направлениях. Таким образом, при встречном движении двух потоков жидкости с одинаковыми скоростью и вязкостью, которые будет создавать предложенное устройство, на границе их раздела будет происходить их взаимное торможение с интенсивным вихреобразованием. Тогда в соответствии с законом Бернулли давление на этой границе будет возрастать и в результате возникнет своеобразный гидродинамический барьер (гидродинамическое сопротивление), препятствующий протеканию через него набегающего внешнего потока (в нашем случае при рассмотрении для лучшего понимания обращенного движения (см. [3])), т.е. когда судно считают неподвижным, а вода и ледяной покров как бы надвигаются на него, скорость внешнего потока будет равна скорости судна, что приведет к повышению давления перед ним. Кроме этого на пути внешнего потока в месте расположения устройства при его работе между корпусом судна и нижней поверхностью ледяного покрова возникнет область завихренной жидкости, что повысит степень турбулентности не только пограничного слоя, возникающего на поверхности самого судна, но приведет и к турбулизации всего внешнего потока между его корпусом и льдом. Вязкостное сопротивление судна возрастет, что, в свою очередь, увеличит давление в этой области (см. [3]).
Также известно (4. Д.Е. Хейсин. Динамика ледяного покрова. - Л.: Гидрометеоиздат, 1967. - 218 с.), что приложение периодической динамической нагрузки к ледяному покрову с частотой, равной частоте резонансных ИГВ, значительно увеличивает деформации ледяного покрова по сравнению с такой же по интенсивности нагрузкой, но приложенной стационарно. Объясняется это тем, что при таких воздействиях возникают резонансные ИГВ. Таким образом, если под вершиной ИГВ, возникших от поступательного движения подводного судна (основных резонансных ИГВ), периодически создавать область повышенного давления с частотой резонансных ИГВ, то это приведет к возбуждению в ледяном покрове дополнительных резонансных ИГВ.
Очевидно, что для достижения максимального периодического возрастания амплитуды суммарных ИГВ необходимо, чтобы время воздействия сил, возбуждающих дополнительные ИГВ, равнялось половине периода Т основных резонансных ИГВ, величину которого можно определить по зависимости [4]
где D - цилиндрическая жесткость ледяной пластины; ρл - плотность льда; h - толщина ледяного покрова; g - ускорение силы тяжести.
В этом случае при перемещении льда вверх от возникших дополнительных ИГВ возбуждающие их силы также будут направлены вверх, а при перемещении льда вниз эти силы исчезают. Таким образом, возникнет наиболее эффективная своеобразная дополнительная к основным ИГВ раскачка ледяного покрова.
Изобретение осуществляется следующим образом.
В корпусе судна в наиболее вероятном месте расположения вершины ИГВ выполнены два водопроточных канала с открытыми в верхних частях участками. В каналах установлены крыльчатки, выполненные с возможностью вращаться в противоположных направлениях и оснащенные лопатками, отогнутыми в направлениях, противоположных направлениям вращения крыльчаток. Такая форма лопаток так же, как и форма лопастей рабочих колес центробежных насосов, увеличивает эффективность их работы. В нашем случае - создает при заданных энергозатратах максимальные центробежные силы, возникающие при выбросе крыльчатками через открытые участки водопроточных каналов масс воды. Габариты каналов и крыльчаток не превышают габаритов судна в месте их расположения, что в отличие от аналога, не приводит к появлению дополнительного сопротивления в виде сопротивления его выступающих частей. Вертикальное расположение стенок каналов обеспечит строгое направление (фокусированное воздействие) выбрасываемых потоков воды под вершину ИГВ. Кроме повышения давления под вершиной ИГВ за счет создаваемых устройством центробежных сил и области завихренной жидкости, его работа за счет близости расположения (друг за другом) водопроточных каналов приведет к гидродинамическому взаимодействию возбуждаемых крыльчатками потоков воды. Вращение крыльчаток в противоположных направлениях не только исключит возникновение кренящего момента, ухудшающего поперечную устойчивость судна, но приведет и к возникновению перпендикулярно расположенного к направлению движения судна гидродинамического барьера, увеличивающего работоспособность предложенного устройства. Для обеспечения возможности заполнения рабочего объема крыльчаток забортной водой после выброса через открытые участки водопроточных каналов масс воды за счет центробежных сил лопатки в момент окончания прохождения ими открытых участков каналов отклоняются, т.е. прижимаются к внутренней поверхности крыльчаток. За отклоненными лопатками вследствие оттеснения воды возникнут области пониженного давления [3], куда устремится забортная вода, обеспечивая тем самым заполняемость данных частей рабочих объемов крыльчаток. После истечения времени, равного времени подхода к закрытым участкам каналов очередных лопаток, они возвращаются в исходное положение. В результате весь рабочий объем крыльчаток, кроме открытых участков каналов, будет заполнен забортной водой. Работа устройства обеспечит более высокое по сравнению с аналогом увеличение давления под вершиной ИГВ. Если этого окажется недостаточно для разрушения ледяного покрова заданной толщины, то крыльчатки начинают периодически с частотой резонансных ИГВ вращать и останавливать в течение времени, равного полупериоду этих волн. В результате под вершиной ИГВ, возникших от поступательного движения судна (основных резонансных ИГВ), будет периодически возникать область повышенного давления с частотой резонансных ИГВ, что приведет к возбуждению в ледяном покрове дополнительных резонансных ИГВ. Вследствие интерференции ИГВ высота суммарных волн возрастет, что позволит достичь заявленный технический результат.
Изобретение поясняется чертежами, где на фиг. 1 показан вид на устройство сбоку; на фиг. 2 и 3 - сечения по Α-A и В-В на фиг. 1.
В корпусе судна 1 выполнены два водопроточных канала 2 с открытыми участками 3 (фиг. 1-3). В каналах 2 установлены крыльчатки 4, оснащенные лопатками 5, которые выполнены с возможностью вращаться в противоположных направлениях (фиг. 2, 3). Если при движении судна 1 с резонансной скоростью up под ледяным покровом 6 высота возбуждаемых ИГВ 7 окажется недостаточной для разрушения ледяного покрова, то крыльчатки начинают вращать с угловыми скоростями ±ω соответственно, что приведет к выбросу через открытые участки 3 водопроточных каналов 2 масс воды 8 и 9 (фиг. 2, 3), которые будут иметь как радиальные составляющие 10 (за счет центробежных сил), так и противоположные по знаку окружные составляющие 11 скорости (за счет закручивания воды в соответствующих каналах 2 (фиг. 2, 3)). Возникший за счет центробежных сил поток воды (составляющие 10) приведет к увеличению давления под вершиной ИГВ 7. Окружные составляющие 11 вызовут возникновение гидродинамического барьера 12 и турбулизацию внешнего потока 13. Лопатки 14 в момент окончания прохождения ими открытых участков 3 каналов 2 отклоняются, т.е. прижимаются к внутренней поверхности крыльчаток 4, что приведет к возникновению областей пониженного давления 15 и, вследствие этого, потоков забортной воды 16 (фиг. 2, 3), заполняющих область 15. В результате работы устройства произойдет увеличение высоты от ИГВ 7 до ИГВ 17. Если этого окажется недостаточно для разрушения ледяного покрова заданной толщины, то крыльчатки 4 начинают периодически вращать и останавливать с частотой резонансных ИГВ в течение времени, равного полупериоду резонансных ИГВ. Это приведет к возбуждению дополнительной системы резонансных ИГВ 18. Наложение волновой системы 17 на систему 18 вызовет увеличение амплитуд ИГВ до ИГВ 19 (фиг. 1).
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2015 |
|
RU2612298C2 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2015 |
|
RU2588563C1 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2015 |
|
RU2589227C1 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2015 |
|
RU2588562C1 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2015 |
|
RU2585133C1 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2015 |
|
RU2589235C1 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2015 |
|
RU2584636C1 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2016 |
|
RU2612065C1 |
СПОСОБ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2019 |
|
RU2723402C1 |
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА | 2021 |
|
RU2779819C1 |
Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров резонансным методом. Устройство для разрушения ледяного покрова состоит из подводного судна, способного при движении под ледяным покровом возбуждать в нем резонансные изгибно-гравитационные волны. На судне в выполненных между его прочным и легким корпусами водопроточных каналах установлены две крыльчатки, поперечные сечения которых расположены перпендикулярно продольной оси судна, они расположены друг за другом и имеют в верхних частях открытые участки. Крыльчатки выполнены с возможностью вращаться в противоположных направлениях, а лопатки крыльчаток в момент окончания прохождения ими открытых участков каналов - отклоняться, т.е. прижиматься к внутренней поверхности крыльчаток, на время, равное времени подхода к закрытым участкам очередных лопаток, после чего возвращаться в исходное положение, крыльчатки также имеют возможность периодически с частотой резонансных изгибно-гравитационных волн начинать и прекращать свое вращение в течение времени, равного полупериоду этих волн. Технический результат заключается в повышении эффективности разрушения ледяного покрова. 1 з.п. ф-лы, 3 ил.
1. Устройство для разрушения ледяного покрова, состоящее из подводного судна, способного при движении под ледяным покровом возбуждать в нем резонансные изгибно-гравитационные волны и создающего с помощью вращающейся крыльчатки, расположенной в верхней части корпуса судна, область повышенного давления под ледяным покровом в месте расположения вершины изгибно-гравитационной волны, отличающееся тем, что на судне в выполненных между его прочным и легким корпусами водопроточных каналах установлены две крыльчатки, поперечные сечения которых расположены перпендикулярно продольной оси судна, они расположены друг за другом и имеют в верхних частях открытые участки, крыльчатки выполнены с возможностью вращаться в противоположных направлениях, а лопатки крыльчаток в момент окончания прохождения ими открытых участков каналов - отклоняться, т.е. прижиматься к внутренней поверхности крыльчаток, на время, равное времени подхода к закрытым участкам очередных лопаток, после чего возвращаться в исходное положение, крыльчатки также имеют возможность периодически с частотой резонансных изгибно-гравитационных волн начинать и прекращать свое вращение в течение времени, равного полупериоду этих волн.
2. Устройство по п. 1, отличающееся тем, что лопатки отогнуты в направлениях, противоположных направлениям вращения крыльчаток.
Авторы
Даты
2016-06-27—Публикация
2015-06-01—Подача