Настоящее изобретение относится к области охраны окружающей среды, а именно к исследованиям особенностей поведения различных химических загрязняющих веществ (ЗВ) в верхней части почвенного покрова под действием атмосферных осадков в лабораторных условиях. Разработка позволяет дать оценку поведения ЗВ в почвах для совершенствования системы мониторинга опасных промышленных объектов и разработке мер по санитарной очистке территории при негативном техногенном воздействии.
Из существующего уровня техники известен способ вытеснения обменных катионов из почвы в лабораторных условиях, который включает воздействие на почвенный покров растворов реагентов, и анализа жидкой фазы после фильтрации через слой почвы (Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во Московского университета, 1970. - 487 с.). Недостатком метода является то, что он не применялся к ЗВ, связанным с техногенным воздействием, а направлен на определение почвенных катионов, таких как кальций и магний.
Другим способом исследования изучения динамики и скорости растворения алюмосодержащих соединений почвы в кислоте является непрерывная промывка почвенных образцов раствором кислоты. При проведении таких экспериментов контролируют количество алюминия и других катионов, перешедших в жидкую фазу, и содержание алюминия в составе различных соединений в твердой фазе почвы (Толпешта И.И. Подвижные соединения алюминия в почвах ненарушенных систем южной тайги. Автореф. дисс. доктора биологических наук. М., Московский госуд. ун-т им. М.В. Ломоносова, 2010, 52 с.) Недостатком метода является то, что он не предназначен для проведения исследования особенностей поведения ЗВ в почвах.
Наиболее близким является способ прогнозирования опасности загрязнения грунтового потока химическими веществами, который включает наполнение почвами специальных колонок и пропускание через них определенного объема дистиллированной или дехлорированной воды, после чего проводится анализ на содержание ЗВ (Методические рекомендации по гигиеническому обоснованию ПДК химических веществ в почве. Утверждено заместителем Главного санитарного врача СССР В.Е. Ковшило 5.08.82, №2609-82. - 27 с.). Недостатком метода является то, что он не позволяет определить параметры подвижности загрязняющего вещества в поверхностном слое, такие как период полувыведения, т.к. скорость подачи воды и скорость фильтрации не фиксируются.
Задачей, на решение которой направлено данное изобретение, является определение специфических особенностей поведения опасных химических ЗВ в поверхностном слое почвы с учетом состава региональных почв без загрязнения территории, для организации системы экологического мониторинга при создании особо опасных производственных объектов, для выбора промплощадок новых производств и санации загрязненных территорий в ходе производственной деятельности.
Данная задача решается за счет того, что способ исследований поведения загрязнений в почвах осуществляется в условиях прямой задачи, при помещении образцов почвы с известной массой и влажностью в колонку высотой 15-20 см с открытой верхней частью, фильтрующим устройством в нижней части и при загрязнении почвы химическими веществами в количестве, характеризующем техногенное воздействие, после этого колонка устанавливается в условия, моделирующие воздействие природных факторов в виде атмосферных осадков, осуществляется сбор фильтрата, прошедшего через загрязненный слой почвы, и определяется содержание ЗВ в фильтрате.
Колонка или колонки с образцами почв и вводимых загрязнений могут быть установлены вертикально на лабораторном стенде и закреплены вплотную друг к другу, в верхнюю часть их подается дистиллированная вода с фиксированным расходом, а в нижней части производится отбор фракций фильтрата, прошедшего через загрязненный слой, определенного объема, после этого определяется содержание ЗВ в фильтрате и рассчитываются параметры подвижности этого вещества в почве.
Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является то, что способ позволяет определить характер поведения ЗВ в почвах с учетом особенностей их состава без загрязнения территории, что позволяет разработать практические рекомендации по экологическому контролю и мониторингу особо опасных промышленных объектов, выбору промплощадки под них и разработке методов санации загрязненных территорий.
Сущность изобретения поясняется чертежами, на которых изображено:
На фиг. 1 - устройство колонки;
На фиг. 2 - устройство лабораторного стенда;
На фиг. 3 - вид лабораторного стенда во время исследований
Способ определения особенностей поведения ЗВ в почвах осуществляется следующим образом (фиг. 1). Отобранные образцы исследуемых почв помещают в пластиковую колонку 1, в нижней части которой установлено фильтрующее устройство 2 и слив 3, 4.
Диаметр колонок изменяется от 10 до 20 см, а высота изменяется от 15 до 20 см, что примерно соответствует размеру штыка лопаты, которая используется для отбора проб почвы при исследовании уровня загрязнения почв по методике (ГОСТ 17.4.4.02-84 «Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа»; ГОСТ 28168-89 «Почвы. Отбор проб»). Уменьшение и увеличение размеров колонки ведет к несоответствию количества загрязненного образца почвы, с количеством пробы почвы, отбираемой по данной методике. Для исследования в таких колонках количество почвы в сухом состоянии составляет 1-2 кг. Способ предоставляет возможность характеризовать особенности поведения ЗВ в слое почвы, который обычно анализируется при проведении исследований по мониторингу промышленного загрязнения, что позволяет разрабатывать рекомендации по совершенствованию такого мониторинга.
В верхнюю часть почвы вводится исследуемое химическое вещество в виде соединения, которое представляет интерес при организации мероприятий экологической безопасности, в количестве, соответствующем различным уровням токсических, техногенных воздействий: 1-100 ПДК и больше, если сведения по этим данным имеются. В случае отсутствия данных - в любом другом количестве, моделирующем воздействие промышленного производства. Далее колонку с загрязненной почвой устанавливают в условия эксперимента при моделировании воздействия атмосферных осадков в виде дождя для лабораторных испытаний. Простота устройств позволяет проводить испытания на большом количестве образцов загрязненной почвы при различных вариантах воздействия, получив большой экспериментальный материал для анализа и выработки рекомендаций. Колонки могут быть выполнены из пустых пластиковых бутылок, что удешевляет проведение исследований за счет вторичного их использования.
При лабораторных испытаниях в условиях моделирования воздействия атмосферных осадков в виде дождя способ реализуют на стенде (фиг. 2), состоящем из одной или нескольких колонок с загрязненной почвой, установленных вертикально. На стенде одновременно могут находиться несколько колонок. В этом случае проводятся параллельные исследования поведения ЗВ различной концентрации, а также для разных видов как ЗВ, так и почв; количество колонок определяют размером стенда. Увеличение количества колонок на стенде позволяет интенсифицировать получение экспериментального материала, ускорить получение данных при различных начальных условиях эксперимента, повысить качество научных исследований.
В верхнюю часть колонок 1 (фиг. 2) подают дистиллированная воду из емкости 5 с фиксированным расходом через дозатор 6. Вода с определенной скоростью фильтруется через загрязненный слой почвы, в нижней части колонки производят отбор фракций фильтрата определенного объема в мерные колбы 7 и фиксируют время заполнения мерных колб. Вид лабораторного стенда во время проведения исследований приведен на фиг. 3.
Скорость подачи дистиллированной воды определяется условиями ее фильтрации через образец почвы. Разные виды почвы имеют различный состав и, как следствие, различное сопротивление фильтрации, что влияет на скорость фильтрации, скорость подачи дистиллированной воды соответствует скорости ее фильтрации через слой почвы в 15-20 см и составляет для различных видов почв 50-100 мл/ч. Уменьшение скорости подачи воды ведет к увеличению времени эксперимента. Увеличение скорости подачи воды приводит к тому, что вода полностью не отфильтровывается и накапливается в верхней части колонки.
Фракции фильтрата отбираются в мерные колбы, преимущественно объемом 25, 50 или 100 мл при фиксировании времени их заполнения, что позволяет определять динамику выделения ЗВ из исследуемого образца почвы и рассчитывать параметры подвижности ЗВ. Уменьшение объема мерных колб приводит к увеличению количества анализов, увеличение объема мерных колб делает более грубой оценку динамики выделения ЗВ и менее точным расчет параметров подвижности ЗВ в слое почвы.
Фракции фильтрата направляют на исследование содержания ЗВ в них аналитическими методами, по возможности, с использованием наиболее чувствительных к низким содержаниям веществ, таких, например, как атомно-абсорбционная спектрофотометрия. На основании полученных данных определяют параметры подвижности ЗВ в исследуемой почве, такие как время полувыведения вещества из загрязненного слоя, с учетом особенностей ее строения: содержания гумуса и других компонентов, сопротивления фильтрации.
Пример: на лабораторном стенде была изучена подвижность в почве таких ЗВ, как выбросы металлургических предприятий в форме оксидов некоторых тяжелых металлов (ТМ). Стенд представляет собой конструкцию из нескольких колонок, дозирующего устройства для равномерного распределения воды по колонкам и емкости для дистиллированной воды. В колонку помещали почву, проводили ее поверхностное загрязнение и пропускали в нее дистиллированную воду. В нижней части колонки устанавливается фильтр для отделения нерастворенных веществ. Фильтрат отбирали в мерные колбы и определяли скорость прохождения воды через образец, значение рН и концентрацию ЗВ в фильтрате. Дозирующее устройство представляет собой регулирующее устройство (винтовой зажим) для равномерной подачи воды в колонки. Таким образом, использование стенда позволяло определять скорость прохождения дистиллированной воды, ее объем, концентрацию загрязняющего вещества в фильтрате в нижней части колонки. В колонку закладывался образец почвы, высушенной до воздушно-сухого состояния, массой 1,5-2,0 кг, высота почвенного образца в колонке составляла примерно 15 см, что соответствует высоте штыка лопаты. Небольшие массы образцов загрязненной почвы позволяли после эксперимента сравнительно просто их обезвреживать и направлять на полигоны промышленных отходов. В качестве образца почвы был взят речной песок. В качестве ЗВ в образцы вводили оксиды тяжелых металлов (ТМ) CuO, Cr2O3, CdO в количествах 10 и 100 ПДК по металлам и MnO2, в количестве 1 ПДК по марганцу. Для исследования использовались химические вещества квалификации «осч». Анализ содержания ТМ в отобранных фракциях воды, прошедшей через загрязненный образец почвы, проводили на атомно-абсорбционном спектрофотометре «Shimadzu»-АА7000. Количество отобранной фракции фильтрата, прошедшего через загрязненную почву, составляло 50 мл. Подвижность ТМ в почве определялась для 2-х загрязненных образцов почвы, далее обозначаемые индексами «1» и «2». В образец «1» были введены CuO, Cr2O3, CdO в количествах 10 ПДК по металлам (ПДК в почве Cu - 3,0 мг/кг; Cr3+ - 6,0 мг/кг; ОДК Cd - 0,5 мг/кг); MnO2 - в количестве 1 ПДК по марганцу (ПДК в почве Мn - 1500 мг/кг). В образец «2» были введены CuO, Cr2O3, CdO, в количествах 100 ПДК по металлам. Скорость фильтрации воды через загрязненные образцы ω была равной ~ 50 мл/ч. В табл. 1 приведены данные по степени выделения металлов α (в долях от исходного содержания) из загрязненных образцов «1» и «2» в зависимости от количества пропущенной через образцы воды.
Для экспериментального стенда константу скорости процесса выделения ЗВ из образца почвы можно рассчитать при интегрировании формулы:
где α - количество выделенного из почвы ЗВ в долях от исходного содержания, к - константа скорости выделения поллютанта из почвы, ω - значение расхода подаваемой на загрязненный образец воды, n - порядок взаимодействия, V - объем подаваемой воды.
Значение порядка процесса можно определить из формулы:
где V1, V2 - объемы воды, пропущенной через образцы почвы с разным исходным содержанием ЗВ С0,1, С0,2, при которых будет выделено одно и то же количество вещества в долях от исходного содержания α; при расходе воды ω1, ω2.
В табл. 2 приведены данные расчета порядка процесса для оксидов ТМ, полученные на основании данных табл. 1.
Как видно из табл. 2, для меди и хрома порядок процесса близок к первому. Для CdO значение порядка процесса было принято также первым, т.к. было установлено выделение металла только при загрязнении в 100 ПДК, что не позволяет использовать формулу (2). Для марганца также был принят первый порядок.
Таким образом, из формулы (1) для первого порядка при интегрировании от 0 до α и от 0 до V получим следующее выражение для определения константы скорости взаимодействия:
Как было отмечено выше, эксперимент проводился при постоянном расходе воды - ω=2,8··10-2 мл/с. Используя данные табл. 1, можно рассчитать значения констант скорости взаимодействия. В табл. 3 приведены результаты расчета констант скорости взаимодействия оксидов ТМ и железа с водой в загрязненных образцах почвы, полученные в результате эксперимента.
Значения константы скорости взаимодействия позволяют сделать оценку периода полувыведения поллютанта из почвенного образца при α=0,5. Можно сделать такую оценку для Удмуртской Республики (УР). Согласно метеонаблюдениям среднегодовое количество осадков для УР составляет 500-600 мм. Предположив, что осадки возможны только в теплое время - ориентировочно 200 дней в году, с учетом размеров колонок с загрязненными образцами почвы можно оценить значение СО, приняв, что осадки выпадают равномерно в течение рассматриваемого периода. Можно определить необходимый объем воды для полувыведения вещества из загрязненного образца по формуле (3) и сделать оценку времени, за которое выпадение такого количества осадков возможно. В табл. 3 приведены данные по оценке периода полувыведения ЗВ из почвенного образца. Следует учесть, что данные эти будут занижены, т.к. температура в реальных условиях отличается от температуры лабораторного помещения, что влияет на скорость процесса в сторону уменьшения, и влага поступает в почву неравномерно.
Из табл. 3 видно, что загрязнения почвы оксидами ТМ имеют низкие константы скорости взаимодействия с водой и имеют длительные времена по выведению из почвы под действием осадков, что свидетельствует о тенденции к локализации данных видов загрязнений. Это следует учитывать при мониторинге промышленных загрязнений.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИСПЫТАНИЯ ЗАГРЯЗНЕННЫХ ПОЧВ И ГРУНТОВ | 2016 |
|
RU2641825C2 |
СПОСОБ СНИЖЕНИЯ ВЕРТИКАЛЬНОЙ ВНУТРИПОЧВЕННОЙ МИГРАЦИИ СВИНЦА И КАДМИЯ | 2021 |
|
RU2803545C2 |
УСТРОЙСТВО ДЛЯ МОНИТОРИНГА ПРОМЫШЛЕННОГО ЗАГРЯЗНЕНИЯ ПОЧВЫ И ГРУНТОВЫХ ВОД | 2014 |
|
RU2595653C2 |
Способ определения максимума геохимической емкости почв и грунтов при их уплотнении на полигонах захоронения отходов | 2020 |
|
RU2740759C1 |
Способ адсорбционной подготовки почвы к фиторемедиации | 2017 |
|
RU2692554C1 |
Способ биологического мониторинга химически опасных объектов | 2024 |
|
RU2821839C1 |
Способ иммобилизации свинца в гумусово-аккумулятивном горизонте урбаноземов | 2020 |
|
RU2738129C1 |
СПОСОБ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТОВ | 2009 |
|
RU2413220C1 |
СПОСОБ САНИТАРНО-ГИГИЕНИЧЕСКОГО НОРМИРОВАНИЯ ВРЕДНЫХ ВЕЩЕСТВ В ПОЧВЕ | 2008 |
|
RU2408733C2 |
СПОСОБ МУЛЬТИСУБСТРАТНОГО ТЕСТИРОВАНИЯ МИКРОБНЫХ СООБЩЕСТВ И ЕГО ПРИМЕНЕНИЕ | 2006 |
|
RU2335543C2 |
Изобретение относится к области охраны окружающей среды, а именно к исследованиям особенностей поведения различных химических веществ техногенного происхождения в верхней части почвенного покрова без загрязнения территории. Помещают 1-2 кг образцов почвы в пластиковую колонку 1 диаметром 10-20 см и высотой 15-20 см, установленную вертикально на стенде с открытой верхней частью и фильтрующим устройством 2 в нижней части. Проводят загрязнение почвы загрязняющим веществом в количестве 1-100 ПДК. После чего на поверхность почвы через дозирующее устройство подводят дистиллированную воду 5 со скоростью 50-100 мл/ч. В нижней части колонки осуществляют сбор фильтрата в мерные колбы 7 объемом 25, 50, 100 мл. Проводят определение концентрации загрязняющего вещества. На основании полученных данных определяют степень и константу скорости выделения загрязняющего вещества из почвы в зависимости от объема пропущенной воды, по которым рассчитывают время полувыделения химического вещества из загрязненной почвы под действием атмосферных осадков. Обеспечивается определение специфических особенностей поведения опасных химических загрязняющих веществ в поверхностном слое почвы с учетом состава региональных почв без загрязнения территории. 1 з.п. ф-лы., 3 табл.,3 ил.
1. Способ исследования особенностей поведения поллютантов в почвах без загрязнения территории, включающий: помещение образцов почвы в колонку с открытой верхней частью и фильтрующим устройством в нижней части, сбор фильтрата, определение содержания загрязняющего вещества в фильтрате и почве, отличающийся тем, что берут 1-2 кг образца почвы, помещают ее в пластиковую колонку диаметром 10-20 см и высотой 15-20 см, установленную вертикально на стенде, и проводят загрязнение почвы загрязняющим веществом в количестве 1-100 ПДК, после чего на поверхность почвы через дозирующее устройство подводят дистиллированную воду со скоростью 50-100 мл/ч, в нижней части колонки осуществляют сбор фильтрата в мерные колбы, объемом 25, 50, 100 мл, и проводят определение концентрации загрязняющего вещества, на основании полученных данных определяют степень и константу скорости выделения загрязняющего вещества из почвы в зависимости от объема пропущенной воды, по которым рассчитывают время полувыделения химического вещества из загрязненной почвы под действием атмосферных осадков.
2. Способ по п. 1, отличающийся тем, что на стенде одновременно монтируют несколько колонок, число которых ограничивается размером стенда, и закрепляют их вплотную друг другу, где исследуют поведение поллютанта в зависимости от его концентрации и типа почвы.
МР по гигиеническому обоснованию пдк химических веществ в почве | |||
СПОСОБ ОПРЕДЕЛЕНИЯ ТОКСИЧНОСТИ ПОЧВЫ МЕТОДОМ БИОТЕСТИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ РАВНОРЕСНИЧНЫХ ИНФУЗОРИЙ PARAMECIUM CAUDATUM EHRENBERG | 2011 |
|
RU2482478C2 |
Способ определения содержания ионов водорастворимых солей в почве | 1987 |
|
SU1492275A1 |
Способ определения степени загрязнения почв нефтепродуктами | 1988 |
|
SU1626240A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОСТИ БИОДЕГРАДАЦИИ УГЛЕВОДОРОДОВ НЕФТИ В НАТИВНЫХ И ЗАГРЯЗНЕННЫХ ПОЧВАХ | 2010 |
|
RU2477472C2 |
Машина для добычи полезного ископаемого из карьеров и производства выемок | 1931 |
|
SU29448A1 |
Способ определения нитратов в почвах и удобрениях | 1947 |
|
SU91850A1 |
Авторы
Даты
2016-07-10—Публикация
2014-12-19—Подача