Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований и может быть использовано для контроля характеристик преобразователей, применяющихся при мониторинге различных технических объектов.
Известно устройство [1], содержащее излучающий пьезоэлемент, опорное зеркало, оптически квантовый генератор, оптически прозрачную призму с двумя параллельными полупрозрачными зеркалами, расположенными под углом 45° к основанию, а опорное зеркало и оптически квантовый генератор закреплены с обеих сторон оптически прозрачной призмы диаметрально противоположно.
К недостаткам следует отнести низкую достоверность, т.к. в устройстве используются два полупрозрачных зеркала и мощность как зондирующего, так и полезного сигнала существенно снижены, что пагубно влияет на достоверность всего устройства. Не контролируется непосредственное смещение рабочей поверхности датчика, что также снижает достоверность. Сложность устройства делает его слабореализуемым.
Наиболее близким является устройство [2], в котором выполняется калибровка системы с помощью оптического интерференционного измерителя линейных перемещений, для него в акустический контакт с монолитным передающим блоком вводится стандартный преобразователь акустической эмиссии, устанавливается калибруемый преобразователь акустической эмиссии на место стандартного, запоминается и обрабатывается сигнал.
К недостаткам следует отнести низкую достоверность, так как оптическим интерферометром снимается информация о смещении поверхности монолитного блока, а не о смещении рабочей поверхности исследуемого датчика. Смещение в точке измерения оптическим интерферометром не совпадает со смещением рабочей поверхности исследуемого датчика, так как не учитывается присоединенная масса, акустический контакт, пространственное распространение акустической волны в монолитном блоке и прочее.
Целью изобретения является повышение достоверности и упрощение устройства.
Поставленная цель достигается тем, что известное устройство для калибровки сейсмоакустических преобразователей, содержащее излучающий элемент, монолитный блок, лазер, фотоприемное устройство, генератор, регистрирующее устройство, калибруемый сейсмоакустический преобразователь дополнительно содержит отверстие в монолитном блоке, приемный модуль, оптический разветвитель, оптическое волокно, зеркало, причем калибруемый сейсмоакустический преобразователь установлен на монолитном блоке центром своей рабочей поверхности на отверстие, на центре рабочей поверхности калибруемого сейсмоакустического преобразователя закреплено зеркало, излучающий элемент используется с отверстием и закреплен снизу монолитного блока, отверстия монолитного блока и излучающего элемента установлены концентрично, приемный модуль расположен в отверстии, на касаясь зеркала, а его выход соединен с помощью оптического волокна с оптическим разветвителем, фотоприемным устройством, лазером, регистрирующие устройства подсоединены к выходу калибруемого сейсмоакустического преобразователя и фотоприемного устройства.
На фиг. 1 представлена функциональная схема устройства.
Устройство включает в себя монолитный блок 1, излучающий элемент 2, калибруемый сейсмоакустический преобразователь (САП) 3, генератор 4, лазер 5, фотоприемное устройство 6, 7 - регистрирующее устройство, 8 - зеркало, 9 - оптическое волокно, 10 - оптический разветвитель, 11 - приемный модуль.
Калибруемый САП 3 устанавливается на монолитный блок 1 так, чтобы центр его рабочей поверхности, на котором закреплено зеркало 8, совпадал с отверстием. Излучающий элемент 2 соединен с генератором 4 и установлен с обратной стороны монолитного блока 1 так, чтобы их отверстия были концентричны. Приемный модуль 11 установлен в отверстии монолитного блока 1 через отверстие излучающего элемента 2 так, чтобы он не касался зеркала 8, напыленного на рабочую поверхность САП в его центре. Непосредственно приемный модуль 11 является частью многолучевого интерферометра.
Использование двухлучевых интерферометров в качестве интерференционного измерителя линейных перемещений [1, 2] малоэффективно, т.к. большой разбаланс плеч приведет к снижению чувствительности и в конечном счете к существенной ошибке и невозможности вести измерения. В этом случае целесообразно использовать многолучевой оптический интерферометр в качестве интерференционного измерителя линейных перемещений с возможностью проводить измерения колебательных поверхностей преобразователей через отверстия. Что и предлагается в настоящем решении.
Излучатель 2, закрепленный на основании монолитного блока 1, излучает акустический сигнал, который фиксируется САП 3 и регистрирующим устройством 7. Для повышения достоверности контроля характеристик САП необходимо измерять колебания его рабочей поверхности, и эти колебания сопоставлять с электрическим сигналом, фиксируемым регистрирующим устройством 7. Измерение механических колебаний рабочей поверхности САП осуществляется многолучевым волоконно-оптическим лазерным интерферометром, в состав которого входят устройства 5 - полупроводниковый лазер, 8 - напыленное зеркало, 9 - оптическое волокно, 10 - оптический разветвитель, 11 - приемный модуль. Оптоэлектронный преобразователь 6 и регистрирующее устройство 7 позволяют регистрировать электрические сигналы, пропорциональные механическим колебаниям рабочей поверхности САП 3. В этом случае нет необходимости контролировать акустический контакт, учитывать присоединенную массу и т.п., так как регистрируется непосредственно колебание рабочей поверхности САП. Здесь необходимо учитывать, что многолучевой оптоволоконный лазерный интерферометр акустически развязан с элементами 1, 2, 3.
Литература
1. Патент РФ №2165092, G01N 1/16, 2001.
2. Патент РФ №2321849, G01N 29/04, 2008.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для калибровки сейсмоакустических преобразователей | 2016 |
|
RU2618497C1 |
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ХАРАКТЕРИСТИК СЕЙСМОАКУСТИЧЕСКИХ ДАТЧИКОВ | 2014 |
|
RU2574218C2 |
Способ для калибровки сейсмоакустических преобразователей | 2015 |
|
RU2612271C1 |
СПОСОБ КАЛИБРОВКИ СЕЙСМОАКУСТИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ | 2014 |
|
RU2595693C2 |
Способ контроля установки сейсмоакустического преобразователя | 2016 |
|
RU2624832C1 |
СПОСОБ КАЛИБРОВКИ ПРЕОБРАЗОВАТЕЛЕЙ АКУСТИЧЕСКОЙ ЭМИССИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2005 |
|
RU2321849C2 |
СПОСОБ КОНТРОЛЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК СЕЙСМОАКУСТИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ | 2014 |
|
RU2550761C1 |
АКУСТООПТИЧЕСКИЙ ВОЛОКОННЫЙ КАБЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2602422C1 |
ВОЛОКОННО-ОПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ ТЕМПЕРАТУРЫ | 2012 |
|
RU2527308C1 |
СПОСОБ КОНТРОЛЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК СЕЙСМОАКУСТИЧЕСКИХ ДАТЧИКОВ | 2014 |
|
RU2558651C1 |
Изобретение относится к геофизическим, в частности сейсмоакустическим, устройствам исследований и может быть использовано для контроля характеристик преобразователей, применяющихся при мониторинге различных технических объектов. Устройство содержит излучающий элемент, монолитный блок, лазер, фотоприемное устройство, генератор, регистрирующее устройство и калибруемый сейсмоакустический преобразователь. В монолитном блоке выполнено отверстие. Калибруемый сейсмоакустический преобразователь установлен на монолитном блоке центром своей рабочей поверхности на отверстие. На центре рабочей поверхности калибруемого сейсмоакустического преобразователя закреплено зеркало. Излучающий элемент используется с отверстием и закреплен снизу монолитного блока. Отверстия монолитного блока и излучающего элемента установлены концентрично. Приемный модуль расположен в отверстии, не касаясь зеркала, а его выход соединен с помощью оптического волокна с оптическим разветвителем, фотоприемным устройством, лазером. Регистрирующие устройства подсоединены к выходу калибруемого сейсмоакустического преобразователя и фотоприемного устройства. Обеспечивается повышение достоверности и упрощение устройства. 1 ил.
Устройство для калибровки сейсмоакустических преобразователей, содержащее излучающий элемент, монолитный блок, лазер, фотоприемное устройство, генератор, регистрирующее устройство, калибруемый сейсмоакустический преобразователь, отличающийся тем, что дополнительно содержит отверстие в монолитном блоке, приемный модуль, оптический разветвитель, оптическое волокно, зеркало, причем калибруемый сейсмоакустический преобразователь установлен на монолитном блоке центром своей рабочей поверхности на отверстие, на центре рабочей поверхности калибруемого сейсмоакустического преобразователя закреплено зеркало, излучающий элемент используется с отверстием и закреплен снизу монолитного блока, отверстия монолитного блока и излучающего элемента установлены концентрично, приемный модуль расположен в отверстии, не касаясь зеркала, а его выход соединен с помощью оптического волокна с оптическим разветвителем, фотоприемным устройством, лазером, регистрирующие устройства подсоединены к выходу калибруемого сейсмоакустического преобразователя и фотоприемного устройства.
СПОСОБ КАЛИБРОВКИ ПРЕОБРАЗОВАТЕЛЕЙ АКУСТИЧЕСКОЙ ЭМИССИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2005 |
|
RU2321849C2 |
Способ гидролиза этилсиликата, применяемого для прецизионного литья | 1948 |
|
SU77339A1 |
Оптико-электронное устройство для измерения амплитуд акустических колебаний поверхности | 1982 |
|
SU1231411A1 |
Устройство для аттестации ультразвуковых преобразователей в режиме излучения | 1986 |
|
SU1518777A1 |
US 7168323 B1, 30.01.2007. |
Авторы
Даты
2016-08-27—Публикация
2014-12-31—Подача