СПОСОБ ОТЖИГА АКТИВНОЙ ЗОНЫ ЯДЕРНОГО РЕАКТОРА И ЯДЕРНЫЙ РЕАКТОР Российский патент 2016 года по МПК C21D6/00 G21D1/04 

Описание патента на изобретение RU2596163C2

Область техники

Изобретение относится к ядерной энергетике, в частности к способам восстановления пластических свойств конструкционных материалов, подвергшихся радиационному воздействию, и его реализация повышает безопасность эксплуатации ядерных реакторов (ЯР). Изобретение может быть успешно использовано в ЯР с жидкометаллическим теплоносителем (ЖМТ), в частности в ядерных реакторах на быстрых нейтронах с тяжелыми жидкометаллическими теплоносителями (ТЖМТ), например эвтектический сплав свинец-висмут, свинец.

Уровень техники

В таких реакторах на быстрых нейтронах с ТЖМТ в качестве конструкционных материалов активной зоны (оболочки твэлов, решетки тепловыделяющих сборок) используются коррозионно-стойкие при температурах до 650°С в потоке ТЖМТ стали феррито-мартенситного класса (ФМС). Однако известным недостатком таких сталей является их склонность к низкотемпературному радиационному охрупчиванию (НТРО) при повреждающей дозе быстрых нейтронов, превышающей 10 смещений на атом (сна), в то время как за топливную кампанию повреждающая доза достигает около 100 сна. Эффект НТРО проявляется при температуре облучения ниже 350-380°С и выражается в потере пластических свойств стали, что может привести к хрупкому разрушению изделий при незначительной деформации. Такие деформации более вероятны при проведении операций перегрузки и перестановки ТВС в активной зоне, включая окончательную выгрузку. Поломки оболочек твэлов и ПЭЛов и хвостовиков твэлов, выполненных из ФМС-стали, наблюдались при эксплуатации активных зон судовых реакторов с тяжелым жидкометаллическим теплоносителем (ТЖМТ) свинец-висмут.

Поэтому эксплуатация ЯР с охрупченными сталями может привести к их аварийной остановке. Для восстановления пластических свойств стали может использоваться режим высокотемпературного отжига радиационных дефектов, заключающийся в нагреве изделий, включающих ФМС, до температуры около 500°С на время около нескольких часов.

Известно устройство для отжига чехлов облученных тепловыделяющих сборок ядерного реактора (Авторское свидетельство СССР SU 1023817), содержащее кожух, заполненный теплоносителем, крышку с отверстиями, рабочую камеру, расположенную внутри кожуха, подводящий и отводящий патрубки, отличающееся тем, что, с целью повышения качества чехлов, рабочая камера выполнена с вертикальными открытыми сверху каналами, сообщенными между собой сверху и снизу, а в одном из каналов установлен электронагреватель, при этом подводящий патрубок размещен над верхней кромкой рабочей камеры, а отводящий - над верхним торцом электронагревателя. Данное техническое решение не позволяет осуществлять отжиг непосредственно в ЯР.

Поскольку в рабочих условиях подогрев теплоносителя в активной зоне составляет около 150°С, а средняя температура ТЖМТ на выходе из активной зоны составляет около 500°С, то радиационному охрупчиванию подвергается нижняя часть активной зоны, омываемая «холодным» теплоносителем.

Для проведения отжига активных зон судовых ЯР с ТЖМТ свинец-висмут перед их выгрузкой из реактора был предложен режим изотермического высокотемпературного отжига, аналогичный режиму высокотемпературной водородной регенерации (ВТР), проводимой для восстановления избыточных количеств оксида свинца водородо-газовой смесью, вводимой в поток ТЖМТ. Такой режим реализовывался при осушенных парогенераторах (ПГ) при температуре ТЖМТ 300-320°С, одинаковой на входе и на выходе активной зоны, создаваемой за счет работы циркуляционных насосов первого контура (ЦНПК) и остаточного энерговыделения активной зоны. (Громов Б.Ф. Способ очистки внутренней поверхности стального циркуляционного контура с жидкометаллическим теплоносителем на основе свинца. Международная заявка на изобретение, № PCT/RU96/00219 06.08.96 г., Карабаш А.Г. «Химико-спектральный анализ и основы химической технологии жидкометаллического теплоносителя эвтектического сплава свинец-висмут», Труды конференции «Тяжелые жидкометаллические теплоносители в ядерных технологиях (ТЖМТ-98), Том 2, стр. 595, Обнинск, 1999, К.Д. Иванов, Ю.И. Орлов, П.Н. Мартынов. «Технология свинцово-висмутового теплоносителя на ЯЭУ первого и второго поколения», Сборник докладов конференции «Тяжелые жидкометаллические теплоносители в ядерных технологиях (ТЖМТ-2003), -Обнинск: ГНЦ РФ - ФЭИ, 2003 г.) Отсутствие отвода тепла в осушенных ПГ и большой расход ТЖМТ позволяли обеспечить изотермический температурный режим первого контура при температуре 300-320°С. После завершения режима ВТР осуществлялся переход к режиму отвода остаточного энерговыделения после остановки циркуляционных насосов первого контура (или значительного снижения их числа оборотов, что соответственно снижает подводимую к ТЖМТ энергию) путем заполнения ПГ конденсатом, образующимся при подаче во второй контур пара от внешнего источника с давлением, соответствующим температуре насыщения более высокой, в сравнении с температурой ТЖМТ. Низкий уровень остаточного энерговыделения, характерный для режима эксплуатации судовых ЯР с ТЖМТ, приводил к довольно быстрому снижению температуры ТЖМТ после остановки ЦНПК за счет тепловых потерь первого контура.

Реализация такого режима на энергетическом ЯР, работающем при высоком значении коэффициента использования установленной мощности (КИУМ) и имеющем высокий уровень мощности остаточного энерговыделения, при отсутствии возможности длительной остановки для расхолаживания и снижения выделяемой мощности, приведет к большим трудностям при возвращении в режим расхолаживания после завершения высокотемпературного отжига радиационных дефектов упомянутым способом и делает такой режим потенциально опасным. Это связано с тем, что выход в изотермический режим при температуре 500°С после осушения ПГ является динамическим процессом, так как происходит за счет мощности остаточного энерговыделения, превышающей уровень тепловых потерь первого контура, и требует быстрого возвращения в режим расхолаживания для исключения недопустимого повышения температуры активной зоны.

Раскрытие изобретения

Задачей, на решение которой направлено изобретение, является создание способа отжига активных зон, исключающего вышеприведенные недостатки известных технических решений в рассматриваемой области.

Техническими результатами при реализации заявляемого изобретения, в частности, являются:

- повышения безопасности проведения высокотемпературного отжига радиационных дефектов и восстановления пластических свойств стали, в частности ФМС-стали, активных зон ЯР;

- обеспечение возможности проведения высокотемпературного отжига радиационных дефектов и восстановления пластических свойств стали, в частности ФМС-стали, активных зон ЯР непосредственно в ядерном реакторе;

- снижение затрат на проведение высокотемпературного отжига радиационных дефектов и восстановления пластических свойств стали, в частности ФМС-стали, активных зон ЯР;

- снижение рисков аварий при перегрузках ЯР за счет повышения пластических свойств стали, в частности ФМС-стали, активных зон ЯР перед их перегрузкой;

- обеспечение возможности проведения высокотемпературного отжига радиационных дефектов и восстановления пластических свойств стали активных зон ЯР в произвольное время, при необходимости, не связанное с перегрузкой.

На достижение каждого из указанных выше технических результатов оказывают влияние следующие отличительные признаки изобретения.

Предлагаемый способ отжига активной зоны ядерного реактора осуществим для ядерного реактора, например, с ЖМТ, который содержит активную зону, по крайней мере один парогенератор (ПГ) и по крайней мере один циркуляционный насос первого контура осевого типа с электрическим приводом.

Предлагается способ отжига активной зоны ядерного реактора. Способ характеризуется тем, что определяют значение повреждающей дозы быстрых нейтронов (число сна), вызывающее недопустимое ухудшение пластических свойств стали, в частности ФМС-стали. Затем, при достижении соответствующего значения энерговыработки реактора, осуществляют изменение направления движения теплоносителя, например, ЖМТ с рабочего (снизу вверх) на обратное (сверху вниз). При этом обеспечивается начало режима отжига, осуществляемого путем омывания горячим теплоносителем с температурой не ниже 450°С, например ЖМТ нижней части активной зоны, содержащей охрупченную сталь. Далее выбирают приемлемое время продолжительности режима отжига, в течение которого будет осуществляться отжиг элементов активной зоны ЯР для восстановления пластических свойств стали в нижней части активной зоны. После чего определяют температуру не ниже такой, при которой обеспечивается восстановление пластических свойств стали в нижней части активной зоны за выбранное время. В случае если температура оказывается слишком высокой или низкой, то осуществляют соответствующее увеличение или уменьшение времени и повторное определение температуры. Обеспечивают в режиме отжига за счет регулирования уровня мощности ЯР и, при необходимости, расхода теплоносителя определенную, как указано выше, температуру в течение выбранного интервала времени. После истечения выбранного времени режима отжига завершают и осуществляют изменение направления движения теплоносителя, например, ЖМТ с обратного (сверху вниз) на рабочее (снизу вверх).

Предлагается конструкция ядерного реактора с ЖМТ, содержащего активную зону, по крайней мере один ПГ, по крайней мере один циркуляционный насос первого контура осевого типа с электрическим приводом. При этом электрический привод циркуляционного насоса содержит схему электропитания, обеспечивающую возможность переключения направления вращения циркуляционного насоса на обратное (реверс) и изменения частоты вращения.

Осуществление изобретения

Предлагается техническое решение по проведению высокотемпературного отжига радиационных дефектов конструкционных материалов активной зоны для восстановления в ЯР с ЖМТ и ТЖМТ (например, эвтектический сплав свинец-висмут, свинец) пластических свойств стали, в частности, коррозионно-стойких при температурах до 650°С в потоке ЖМТ сталей феррито-мартенситного класса (ФМС).

Предлагаемый способ отжига активной зоны ядерного реактора пригоден для ядерных реакторов с ЖМТ, в которых циркуляция теплоносителя осуществляется осевыми циркуляционными насосами с электроприводом.

Для проведения высокотемпературного отжига активной зоны в ЯР с осевыми насосами при работе в неизотермическом режиме на сравнительно невысоком уровне мощности с помощью переключений в электрической схеме питания электроприводов насосов производится изменение направления их вращения. При этом изменяется направление циркуляции теплоносителя через активную зону. «Холодный» теплоноситель после ПГ в этом случае подается на выход активной зоны, а горячий теплоноситель с температурой более 450°С будет омывать нижнюю часть активной зоны, где сталь охрупчилась. При этом будет происходить восстановление пластических свойств стали. Поскольку осушать ПГ при таком способе реализации режима высокотемпературного отжига не требуется, то отвод остаточного энерговыделения после завершения режима отжига и остановки реактора будет обеспечен. Таким образом, режим отжига будет безопасным. Поскольку гидравлический кпд проточной части насоса при обратном направлении вращения будет ниже, то расход теплоносителя при одном и том же числе оборотов насоса (частоте вращения) в случае обратного вращения будет ниже, чем в случае прямого вращения. Это позволит более просто обеспечить режим отжига с превышением относительной мощности над относительным расходом и достичь температуры теплоносителя, омывающего нижнюю часть активной зоны, на уровне более 450°С при более низком уровне мощности реактора, т.е. в более безопасных условиях. Ожидать снижения ресурса насоса при его работе в таком нерасчетном режиме не следует в связи с его кратковременностью.

Похожие патенты RU2596163C2

название год авторы номер документа
Ядерный реактор с тяжелым жидкометаллическим теплоносителем 2021
  • Дедуль Александр Владиславович
  • Степанов Владимир Сергеевич
  • Тошинский Георгий Ильич
  • Арсеньев Юрий Александрович
  • Комлев Олег Геннадьевич
  • Вахрушин Михаил Петрович
  • Григорьев Сергей Александрович
  • Самкотрясов Сергей Владимирович
RU2756230C1
Тепловыделяющая сборка активной зоны ядерного реактора 2021
  • Дедуль Александр Владиславович
  • Вахрушин Михаил Петрович
  • Тошинский Георгий Ильич
  • Конюхов Руслан Андреевич
  • Татаренко Юрий Владимирович
RU2755683C1
ЯДЕРНЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ (ВАРИАНТЫ) 2012
  • Тошинский Георгий Ильич
RU2521863C1
Ядерная установка с реактором с жидкометаллическим теплоносителем 2016
  • Шарикпулов Саид Мирфаисович
RU2632814C1
Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем 2018
  • Сила-Новицкий Александр Георгиевич
  • Лемехов Вадим Владимирович
  • Моисеев Андрей Владимирович
  • Адельфинский Кирилл Анатольевич
  • Логвенчев Иван Сергеевич
RU2680836C1
ЯДЕРНЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ 2021
  • Дедуль Александр Владиславович
  • Самкотрясов Сергей Владимирович
  • Тошинский Георгий Ильич
  • Арсеньев Юрий Александрович
  • Вахрушин Михаил Петрович
RU2756231C1
ЯДЕРНЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ, СИСТЕМА ДЛЯ КОНТРОЛЯ ТЕРМОДИНАМИЧЕСКОЙ АКТИВНОСТИ КИСЛОРОДА В ТАКИХ РЕАКТОРАХ И СПОСОБ КОНТРОЛЯ ТЕРМОДИНАМИЧЕСКОЙ АКТИВНОСТИ КИСЛОРОДА 2013
  • Асхадуллин Радомир Шамильевич
  • Иванов Константин Дмитриевич
  • Мартынов Петр Никифорович
  • Стороженко Алексей Николаевич
RU2545517C1
ЯДЕРНЫЙ РЕАКТОР ИНТЕГРАЛЬНОГО ТИПА С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ 2022
  • Дедуль Александр Владиславович
  • Григорьев Сергей Александрович
  • Вахрушин Михаил Петрович
  • Самкотрясов Сергей Владимирович
RU2798478C1
ЯДЕРНЫЙ РЕАКТОР 1990
  • Дубовский Б.Г.
  • Карих К.И.
  • Дубовский П.Б.
  • Карих А.К.
RU2017242C1
ЯДЕРНЫЙ РЕАКТОР С ТЯЖЕЛЫМ ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ 2021
  • Дедуль Александр Владиславович
  • Тошинский Георгий Ильич
  • Самкотрясов Сергей Владимирович
  • Арсеньев Юрий Александрович
RU2775269C1

Реферат патента 2016 года СПОСОБ ОТЖИГА АКТИВНОЙ ЗОНЫ ЯДЕРНОГО РЕАКТОРА И ЯДЕРНЫЙ РЕАКТОР

Изобретение относится к ядерным реакторам на быстрых нейтронах с тяжелыми жидкометаллическими теплоносителями. Способ характеризуется тем, что определяют значение повреждающей дозы быстрых нейтронов (число сна), вызывающее недопустимое снижение пластических свойств стали. Затем, при достижении соответствующего значения энерговыработки реактора, осуществляют изменение направления движения теплоносителя с рабочего на обратное. Далее выбирают время, в течение которого будет осуществляться отжиг элементов активной зоны, после чего выбирают и обеспечивают в режиме отжига за счет регулирования уровня мощности температуру не ниже такой, при которой обеспечивается восстановление пластических свойств стали в нижней части активной зоны за выбранное время. После истечения выбранного времени режим отжига завершают и осуществляют изменение направления движения теплоносителя с обратного на рабочее. Технический результат - возможность отжига радиационных дефектов и восстановления пластических свойств стали непосредственно в реакторе. 2 н. и 3 з.п. ф-лы.

Формула изобретения RU 2 596 163 C2

1. Способ отжига активной зоны ядерного реактора, содержащего по меньшей мере активную зону, по крайней мере один парогенератор и по крайней мере один циркуляционный насос первого контура осевого типа с электрическим приводом, характеризующийся тем, что определяют значение повреждающей дозы нейтронов, вызывающее недопустимое ухудшение пластических свойств стали, осуществляют при достижении соответствующего значения энерговыработки реактора изменение направления движения теплоносителя с рабочего (снизу вверх) на обратное (сверху вниз), при этом обеспечивают начало режима отжига, осуществляемого путем омывания горячим теплоносителем нижней части активной зоны, содержащей охрупченную сталь, затем выбирают время продолжительности режима отжига, определяют температуру не ниже такой, при которой обеспечивается восстановление пластических свойств стали в нижней части активной зоны за выбранное время, после чего осуществляют регулирование уровня мощности ядерного реактора для поддержания определенной температуры в течение выбранного времени, а после истечения выбранного времени завершают режим отжига и осуществляют изменение направления движения теплоносителя с обратного (сверху вниз) на рабочее (снизу вверх).

2. Способ по п. 1, отличающийся тем, что обеспечивают омывание нижней части активной зоны горячим теплоносителем с температурой не ниже 450°C.

3. Способ по п. 1, отличающийся тем, что в режиме отжига для поддержания определенной температуры в течение выбранного времени осуществляют регулирование расхода теплоносителя.

4. Ядерный реактор с ЖМТ, содержащий активную зону, по крайней мере один парогенератор, по крайней мере один циркуляционный насос первого контура осевого типа с электрическим приводом, отличающийся тем, что электрический привод циркуляционного насоса содержит схему электропитания, обеспечивающую возможность переключения направления вращения циркуляционного насоса на обратное (реверс).

5. Реактор по п. 4, отличающийся тем, что электрический привод циркуляционного насоса содержит схему электропитания, обеспечивающую возможность изменения частоты вращения.

Документы, цитированные в отчете о поиске Патент 2016 года RU2596163C2

СПОСОБ ВОССТАНОВЛЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛА КОРПУСОВ ЭНЕРГЕТИЧЕСКИХ РЕАКТОРОВ ВВЭР-1000 2009
  • Штромбах Ярослав Игоревич
  • Гурович Борис Аронович
  • Ерак Дмитрий Юрьевич
  • Журко Денис Александрович
  • Забусов Олег Олегович
  • Кулешова Евгения Анатольевна
  • Николаев Юрий Анатольевич
RU2396361C1
Автореферат на соиск
д.т.н., Глава VIII
Москва, 2003 l;US5264056 A1, 23.11.1993 ;US20140153685 A1, 05.06.2014.

RU 2 596 163 C2

Авторы

Тошинский Георгий Ильич

Даты

2016-08-27Публикация

2014-12-30Подача