СПОСОБ УТИЛИЗАЦИИ ЭНЕРГИИ ГЕОТЕРМАЛЬНЫХ ВОД Российский патент 2016 года по МПК F24J3/08 

Описание патента на изобретение RU2596293C2

Изобретение относится к области геотермальной энергетики и может быть использовано для получения электроэнергии путем утилизации тепловой и сопутствующих видов энергий из геотермальных ресурсов.

Запасы большинства геотермальных месторождений имеют низкие и средние температуры и это не позволяет обеспечить их конкурентоспособность с традиционными энергоносителями. Скважины эксплуатируются на различные теплоэнергетические нужды в прерывистом режиме только в холодное время года, а с весны до осени скважины простаивают из-за снижения или отсутствия потребности в тепловой энергии. Эффективное освоение геотермальных ресурсов обеспечивается при постоянной эксплуатации геотермальных скважин с дебитами, близкими к эксплуатационным запасам, чего можно достичь при преобразовании тепловой энергии термальных вод в электроэнергию. Большая часть выявленных геотермальных ресурсов относятся к среднетемпературным (80-110°С), использование таких ресурсов для выработки электроэнергии становится малоэффективным.

Известен способ утилизации энергии геотермальных вод (Патент RU 2190812 С1, Бюл. №28. 2002).

При таком способе происходит утилизация тепловой энергии, избыточной потенциальной энергии и химической энергии растворенных газов. Утилизация тепловой энергии геотермальных вод происходит путем ее передачи через промежуточные теплообменники вторичному теплоносителю, химической энергии растворенных газов посредством использования первичного и вторичного сепараторов, газгольдера и газораспределительного пункта, а избыточной потенциальной энергии с использованием детандера и компрессора на одном валу.

Недостатком такого способа является сезонная эксплуатация геотермальных скважин, приводящая к снижению отбора геотермальных ресурсов и ухудшению экономических показателей эксплуатации геотермального месторождения.

Целью настоящего изобретения является постоянная эксплуатация среднетемпературных геотермальных скважин и повышение термодинамической эффективности утилизации тепловой энергии термальных вод путем ее преобразования в электроэнергию.

Для достижения поставленной цели тепло термальной воды через первичный теплообменник передается низкокипящему рабочему агенту, циркулирующему во вторичном контуре бинарной ГеоЭС, для его нагрева до температуры испарения при соответствующем давлении. Использование всей термальной воды для такого нагрева позволяет наиболее эффективно использовать ее тепло и снижать температуру отработанной воды до довольно низкого значения (20-45°С), превышающего температуру конденсации рабочего агента на величину температурного напора в теплообменнике. Дальнейшее испарение и перегрев рабочего агента происходит в испарителе ГеоЭС за счет выхлопных газов газотурбинной электростанции, в камеру сгорания которой поступает газ, извлеченный из термальной воды, и из магистрального газопровода.

На приведенном чертеже изображена технологическая схема предлагаемого способа. Термальная вода из геотермальной скважины 1 направляется в теплообменник 2 бинарной ГеоЭС, где происходит нагрев низкокипящего рабочего агента до температуры испарения при соответствующем давлении. Далее отработанная вода поступает в детандер 7 для утилизации избыточной потенциальной энергии. Из детандера термальная вода с низким давлением поступает в сепаратор 9. Жидкая фаза энергоносителя 8 из сепаратора направляется на сброс или на обратную закачку в материнский пласт, а отсепарированный газ поступает в компрессор 10, привод которого осуществляется детандером 7. Из компрессора газ с высокими значениями давления и температуры направляется в теплообменник 11, куда противотоком также подводится нагреваемая пресная вода 13, которая в дальнейшем используется на различные потребительские нужды. Из теплообменника 11 охлажденный и осушенный газ поступает в газгольдер 14, а конденсат 12 уходит в сток. Из газгольдера газ поступает на газотурбинную электростанцию 15, куда также подводится газ из газопровода 16. Высокотемпературные выхлопные газы газотурбинной электростанции поступают в испаритель 3 бинарной ГеоЭС, где осуществляется испарение и перегрев низкокипящего рабочего агента, поступающего из теплообменника 2. Перегретый пар из испарителя последовательно проходит турбину 4, конденсатор 5 и циркуляционный насос 6 и далее поступает в теплообменник 2, и на этом цикл Ренкина, реализуемый в бинарной ГеоЭС, замыкается. Отработанные выхлопные газы из испарителя 3 направляются на сброс.

Похожие патенты RU2596293C2

название год авторы номер документа
СПОСОБ КОМПЛЕКСНОЙ УТИЛИЗАЦИИ ГЕОТЕРМАЛЬНЫХ ВОД 2016
  • Алхасов Алибек Басирович
  • Алхасова Джамиля Алибековна
  • Алхасов Басир Алибекович
RU2650447C2
ПАРОТУРБИННАЯ УСТАНОВКА ДЛЯ ГЕОТЕРМАЛЬНОЙ ЭЛЕКТРОСТАНЦИИ 2003
  • Алхасов А.Б.
RU2246010C1
СПОСОБ УТИЛИЗАЦИИ ЭНЕРГИИ ГЕОТЕРМАЛЬНЫХ ВОД 2001
  • Магомедов М.-К.М.
  • Алхасов А.Б.
  • Вердиев М.Г.
  • Чупалаев Ч.М.
RU2190812C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ СОЛЕОТЛОЖЕНИЯ ПРИ УТИЛИЗАЦИИ ЭНЕРГИИ ГЕОТЕРМАЛЬНЫХ ВОД 2008
  • Ахмедов Ганапи Янгиевич
RU2372564C1
ГЕЛИО-ГЕОТЕРМИЧЕСКАЯ СТАНЦИЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2011
  • Хафизов Тагир Мавлитович
  • Денисов Сергей Егорович
RU2459157C1
ПАРОТУРБИННАЯ УСТАНОВКА ДЛЯ ГЕОТЕРМАЛЬНОЙ ЭЛЕКТРОСТАНЦИИ 1991
  • Алхасов А.Б.
  • Гайдаров Г.М.
  • Магомедбеков Х.Г.
RU2035588C1
Геотермальная электростанция 2021
  • Таймаров Михаил Александрович
  • Чикляев Евгений Геннадьевич
RU2767421C1
ПАРОТУРБИННАЯ УСТАНОВКА ДЛЯ ГЕОТЕРМАЛЬНОЙ ЭЛЕКТРОСТАНЦИИ 1996
  • Алхасов А.Б.
RU2110019C1
СПОСОБ РАБОТЫ КОМБИНИРОВАННОЙ ГАЗОТУРБИННОЙ УСТАНОВКИ СИСТЕМЫ ГАЗОРАСПРЕДЕЛЕНИЯ 2013
  • Гафуров Айрат Маратович
RU2557823C2
СИСТЕМА ТЕПЛОСНАБЖЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ НА ОСНОВЕ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ 2010
  • Алхасов Алибек Басирович
  • Алхасова Джамиля Алибековна
RU2445554C1

Иллюстрации к изобретению RU 2 596 293 C2

Реферат патента 2016 года СПОСОБ УТИЛИЗАЦИИ ЭНЕРГИИ ГЕОТЕРМАЛЬНЫХ ВОД

Изобретение относится к энергетике. Способ утилизации энергии геотермальных вод включает геотермальную скважину, промежуточные теплообменники, детандер с компрессором на одном валу, сепаратор и газгольдер. Испарение и перегрев рабочего агента, поступающего на турбину геотермальной электростанции (ГеоЭС), осуществляется в испарителе за счет высокотемпературных выхлопных газов газотурбинной электростанции, в камеру сгорания которой поступает газ из газгольдера, извлеченный из термальной воды, а также газ из магистрального газопровода. Изобретение позволяет повысить эффективность использования геотермальных вод. 1 ил.

Формула изобретения RU 2 596 293 C2

Способ утилизации энергии геотермальных вод путем передачи через теплообменники тепловой энергии геотермальной воды вторичному теплоносителю и использования в качестве дополнительных источников энергии химической энергии растворенных газов с использованием сепаратора и газгольдера и избыточной потенциальной энергии посредством использования детандера и компрессора на одном валу, отличающийся тем, что тепловая энергия термальной воды передается через теплообменник низкокипящему рабочему агенту, циркулирующему в контуре бинарной ГеоЭС, для его нагрева до температуры испарения, дальнейшее испарение и перегрев рабочего агента осуществляется за счет выхлопных газов газотурбинной электростанции, в камеру сгорания которой поступает газ из газгольдера и магистрального газопровода.

Документы, цитированные в отчете о поиске Патент 2016 года RU2596293C2

СПОСОБ УТИЛИЗАЦИИ ЭНЕРГИИ ГЕОТЕРМАЛЬНЫХ ВОД 2001
  • Магомедов М.-К.М.
  • Алхасов А.Б.
  • Вердиев М.Г.
  • Чупалаев Ч.М.
RU2190812C1
ПРИБОР ДЛЯ ПАРАЛЛЕЛЬНОЙ УСТАНОВКИ ПРЕДМЕТОВ 1927
  • Просвирнин И.И.
SU6205A1
RU 46046 U1, 10.06.2005
US 3953972 A, 04.05.1976
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1

RU 2 596 293 C2

Авторы

Алхасов Алибек Басирович

Алхасова Джамиля Алибековна

Алхасов Басир Алибекович

Даты

2016-09-10Публикация

2015-03-31Подача