Изобретение относится к горному делу и может быть использовано для повышения точности определения направления действия и значений главных напряжений в горном массиве, оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения при подземной разработке месторождений полезных ископаемых.
Известен способ определения главных нормальных напряжений в массиве, заключающийся в том, что с поверхности выработки в трех ортогональных плоскостях бурят три параллельных шпура по схеме прямоугольной розетки скоростей, в них спускают на равные глубины датчики ультразвуковых волн, определяют скорости распространения продольных волн между каждой парой датчиков и по максимальным и минимальным значениям скоростей определяют ориентацию эллипса скоростной анизотропии, при этом направление длинной оси эллипса принимают одинаковым с направлением максимального главного напряжения. Используя тарировочные зависимости между скоростью распространения упругих волн и напряжением, полученные с применением метода разгрузки, вычисляют главные нормальные напряжения [Ямщиков B.C. Методы и средства исследования и контроля горных пород и процессов. М. Недра, 1982, с. 140-151].
Указанный способ обладает низкой точностью определения главных нормальных напряжений и высокой трудоемкостью проведения измерений, связанной с определением ориентации эллипса скоростной анизотропии и определением тарировочных зависимостей между скоростью распространения упругих волн и напряжением, полученным методом разгрузки, особенно в массиве блочного строения.
Наиболее близким по технической сущности и достигаемому результату является способ кернового бурения скважин, включающий извлечение керна и оценку характера разрушения кернов скальных пород. Данный способ применяется для определения удароопасности участков горного массива в горных выработках, а при определении степени удароопасности горных пород учитывается лишь количество выпукло-вогнутых дисков толщиной 1-2 см в метровом интервале скважины и не учитываются вообще интервалы, где керн разрушен до щебня или дресвы. Интервалы, где керн был полностью разрушен на щебень, дресву или песок при бурении, характеризуются наибольшей напряженностью. [Инструкция по безопасному ведению горных работ на рудных и нерудных месторождениях, объектах строительства подземных сооружений, склонных и опасных по горным ударам (РД 06-329-99), 1999 г. (прототип)].
Недостатком данного способа является трудоемкость и сложности осуществления на больших участках в процессе эксплуатации месторождения.
Целью изобретения является повышение точности определения направления действия и значений главных напряжений для обеспечения безопасного и эффективного освоения месторождений твердых полезных ископаемых путем оценки напряженно-деформированного состояния массива горных пород.
Сущность изобретения поясняется чертежами, где на Фиг. 1 показано устройство для проведения технологических операций в скважинах; на Φиг. 2 приведена схема установки отвеса для определения направления вертикали; на Φиг. 3а изображена схема деформирования скважины, на Фиг. 3б - схема сдвига скважины.
На чертежах обозначены направление отвеса - 1; «вертикаль камеры (мнимая» вертикаль) - 2; направление действия максимальных напряжений - 3; d1 и d2 - соответственно начальный диаметр и конечный диаметры деформируемой скважины, (мм); ΔН - величина сдвига, (мм); α - угол между вертикалью и направлением действия максимальных напряжений, (град.); β - угол между «мнимой» вертикалью и направлением действия максимальных напряжений, (град.).
Способ реализуется следующим образом.
Из горных выработок, подверженных влиянию высоких напряжений техногенного или природного происхождения, в радиальных направлениях отбуривают скважины или шпуры, длиной от 5 м, диаметром от 40 мм.
Для определения необходимых границ изображения деформируемого сечения скважины (для расчета относительных деформаций и определения направления действия максимальных напряжений) на внутреннюю поверхность скважины наносятся метки в виде окружности маркером, закрепленным специальным устройством для работы в скважинах, и направляющими штангами, позволяющими производить технологические операции на расстояние до 20 м и более от устья в недоступных местах или на внутреннюю поверхность скважины наносится слой краски (фиг. 1).
Далее обследуют скважины с применением видеоэндоскопа, позволяющего выполнять фото- и видеофиксацию. Для определения положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин применяется отвес - 1, закрепленный на направляющих штангах, используемых для видеоэндоскопа в скважинах (Фиг. 2). На полученных снимках определяются параметры обозначенных контуров - их размеры - d1, d2. Направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1 - 3, определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига скважины относительно ΔН и т.д.
Скважины картируют. Строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка (Фиг. 3а) или сдвига (Фиг. 3б).
Сжатие скважин зависит от величины максимальных напряжений σ1. Чем больше максимальные напряжения, тем больше относительные деформации
где d1 - начальный диаметр скважины,
d2 - наименьший диаметр деформируемой скважины,
К1 - эмпирический коэффициент, учитывающий физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений.
Способ позволяет фиксировать смещения стенок скважин при обработке фото- и видеоматериалов с точностью до 0,1 мм, что соответствует точности определения относительных деформаций 0,001. Устанавливается зависимость деформаций ε - скважины или шпура от уровня напряженности (диапазон напряжений) для локального участка месторождения и конкретного типа горной породы с учетом его физико-механических свойств и структурной нарушенности. С увеличением параметров деформирования и сдвига возрастают напряжения, действующие в массиве горных пород.
Для достоверности получения конечных результатов для конкретного участка месторождения необходимо картировать не единичные скважины, а максимальное их количество - технологических, например, взрывных, а также пробуренных специально.
В качестве базовых данных для определения диапазона значений напряжений на исследуемом участке используется сопоставление параметров деформирования скважин от уровня напряженности массив, полученные с помощью методов дискования керна или разгрузки.
Способ позволяет в относительно короткие временные промежутки оценивать напряженно-деформированное состояние массива горных пород: направление действия максимальных главных нормальных напряжений и диапазон их значений, относительные деформации, местоположение зон сдвига и сжатия скважин с помощью видеоэндоскопа, а также прогнозировать развитие деформационных процессов для обеспечения безопасной и эффективной эксплуатации месторождений твердых полезных ископаемых.
название | год | авторы | номер документа |
---|---|---|---|
ВНУТРИСКВАЖИННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ЗОН ПОВРЕЖДЕНИЯ ГОРНЫХ ПОРОД | 2015 |
|
RU2583032C1 |
СПОСОБ ОЦЕНКИ СТРУКТУРНО НАРУШЕННЫХ И УДАРООПАСНЫХ МАССИВОВ ГОРНЫХ ПОРОД | 2014 |
|
RU2566885C1 |
Способ определения динамики процессов деформирования породы горного массива и устройство для его реализации | 2016 |
|
RU2624746C1 |
Способ определения напряженного состояния массива горных пород | 2021 |
|
RU2768768C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛАВНЫХ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2029084C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАДАННОЙ СТЕПЕНИ ДРОБЛЕНИЯ ТРЕЩИНОВАТОГО ГОРНОГО МАССИВА И ТРЕБУЕМОГО КОЭФФИЦИЕНТА ИСПОЛЬЗОВАНИЯ ШПУРА ВЗРЫВОМ | 2010 |
|
RU2442957C2 |
СПОСОБ СОЗДАНИЯ РАЗГРУЗОЧНЫХ ЩЕЛЕЙ В УДАРООПАСНОМ ГОРНОМ МАССИВЕ ТЕРМООБРАБОТКОЙ СКВАЖИН | 2012 |
|
RU2493368C1 |
СПОСОБ УКРЕПЛЕНИЯ ПОРОД ШТАНГАМИ В ГОРНЫХ ВЫРАБОТКАХ | 1997 |
|
RU2132464C1 |
Способ оценки удароопасности массива горных пород | 1990 |
|
SU1745968A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД | 2007 |
|
RU2339815C1 |
Изобретение относится к горному делу и может быть использовано для определения направления действия и значений главных напряжений в горном массиве, оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения при подземной разработке месторождений полезных ископаемых. Технический результат заключается в повышении точности определения направления главных напряжений, обеспечении безопасности и эффективности освоения месторождения. Способ включает бурение скважин или шпуров в подземных горных выработках длиной от 5 м, диаметром от 40 мм. На внутреннюю поверхность скважин наносят метки в виде окружности маркером или краской. Определяют положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин с помощью видеоэндоскопа обследуют скважины. По полученным снимкам оперативно определяют наименьший диаметр скважины, направление которого соответствует направлению действия максимальных напряжений в массиве. На снимках определяют параметры обозначенных контуров d1, d2, при этом направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1. Определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига ΔH. Строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка или сдвига. Деформации скважины определяют в зависимости от d1 - начального диаметра скважины, d2 - наименьшего диаметра деформируемой скважины и K1 - эмпирического коэффициента, учитывающего физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений. 3 ил.
Внутрискважинный способ определения направления действия и значений главных напряжений, включающий бурение скважин или шпуров в подземных горных выработках, отличающийся тем, что бурят скважины или шпуры длиной от 5 м, диаметром от 40 мм, на внутреннюю поверхность скважин наносят метки в виде окружности маркером или краской, определяют положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин с помощью видеоэндоскопа обследуют скважины, по полученным снимкам оперативно определяют наименьший диаметр скважины, направление которого соответствует направлению действия максимальных напряжений в массиве, на полученных снимках определяют параметры обозначенных контуров d1, d2, при этом направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1, определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига скважины относительно ΔH, скважины картируют, строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка или сдвига, а т.к. сжатие скважин зависит от величины максимальных напряжений σ1, то деформации скважины определяют по формуле
где d1 - начальный диаметр скважины,
d2 - наименьший диаметр деформируемой скважины,
K1 - эмпирический коэффициент, учитывающий физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений.
Способ определения упругих свойств массива горных пород | 1979 |
|
SU872757A1 |
Способ оценки уровня напряженного состояния массива горных пород и прогноза его удароопасности | 1988 |
|
SU1671896A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИОННЫХ ХАРАКТЕРИСТИК МАССИВА ГОРНЫХ ПОРОД | 2004 |
|
RU2276263C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ ГОРНЫХ ПОРОД В ЗОНАХ, НЕДОСТУПНЫХ ДЛЯ ПРЯМЫХ ИЗМЕРЕНИЙ | 2012 |
|
RU2509889C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛАВНЫХ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД | 1994 |
|
RU2064579C1 |
CN 101526009 B, 24.10.2012. |
Авторы
Даты
2016-09-20—Публикация
2015-07-09—Подача