ВНУТРИСКВАЖИННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ ДЕЙСТВИЯ И ЗНАЧЕНИЙ ГЛАВНЫХ НАПРЯЖЕНИЙ Российский патент 2016 года по МПК E21C39/00 

Описание патента на изобретение RU2598009C1

Изобретение относится к горному делу и может быть использовано для повышения точности определения направления действия и значений главных напряжений в горном массиве, оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения при подземной разработке месторождений полезных ископаемых.

Известен способ определения главных нормальных напряжений в массиве, заключающийся в том, что с поверхности выработки в трех ортогональных плоскостях бурят три параллельных шпура по схеме прямоугольной розетки скоростей, в них спускают на равные глубины датчики ультразвуковых волн, определяют скорости распространения продольных волн между каждой парой датчиков и по максимальным и минимальным значениям скоростей определяют ориентацию эллипса скоростной анизотропии, при этом направление длинной оси эллипса принимают одинаковым с направлением максимального главного напряжения. Используя тарировочные зависимости между скоростью распространения упругих волн и напряжением, полученные с применением метода разгрузки, вычисляют главные нормальные напряжения [Ямщиков B.C. Методы и средства исследования и контроля горных пород и процессов. М. Недра, 1982, с. 140-151].

Указанный способ обладает низкой точностью определения главных нормальных напряжений и высокой трудоемкостью проведения измерений, связанной с определением ориентации эллипса скоростной анизотропии и определением тарировочных зависимостей между скоростью распространения упругих волн и напряжением, полученным методом разгрузки, особенно в массиве блочного строения.

Наиболее близким по технической сущности и достигаемому результату является способ кернового бурения скважин, включающий извлечение керна и оценку характера разрушения кернов скальных пород. Данный способ применяется для определения удароопасности участков горного массива в горных выработках, а при определении степени удароопасности горных пород учитывается лишь количество выпукло-вогнутых дисков толщиной 1-2 см в метровом интервале скважины и не учитываются вообще интервалы, где керн разрушен до щебня или дресвы. Интервалы, где керн был полностью разрушен на щебень, дресву или песок при бурении, характеризуются наибольшей напряженностью. [Инструкция по безопасному ведению горных работ на рудных и нерудных месторождениях, объектах строительства подземных сооружений, склонных и опасных по горным ударам (РД 06-329-99), 1999 г. (прототип)].

Недостатком данного способа является трудоемкость и сложности осуществления на больших участках в процессе эксплуатации месторождения.

Целью изобретения является повышение точности определения направления действия и значений главных напряжений для обеспечения безопасного и эффективного освоения месторождений твердых полезных ископаемых путем оценки напряженно-деформированного состояния массива горных пород.

Сущность изобретения поясняется чертежами, где на Фиг. 1 показано устройство для проведения технологических операций в скважинах; на Φиг. 2 приведена схема установки отвеса для определения направления вертикали; на Φиг. 3а изображена схема деформирования скважины, на Фиг. 3б - схема сдвига скважины.

На чертежах обозначены направление отвеса - 1; «вертикаль камеры (мнимая» вертикаль) - 2; направление действия максимальных напряжений - 3; d1 и d2 - соответственно начальный диаметр и конечный диаметры деформируемой скважины, (мм); ΔН - величина сдвига, (мм); α - угол между вертикалью и направлением действия максимальных напряжений, (град.); β - угол между «мнимой» вертикалью и направлением действия максимальных напряжений, (град.).

Способ реализуется следующим образом.

Из горных выработок, подверженных влиянию высоких напряжений техногенного или природного происхождения, в радиальных направлениях отбуривают скважины или шпуры, длиной от 5 м, диаметром от 40 мм.

Для определения необходимых границ изображения деформируемого сечения скважины (для расчета относительных деформаций и определения направления действия максимальных напряжений) на внутреннюю поверхность скважины наносятся метки в виде окружности маркером, закрепленным специальным устройством для работы в скважинах, и направляющими штангами, позволяющими производить технологические операции на расстояние до 20 м и более от устья в недоступных местах или на внутреннюю поверхность скважины наносится слой краски (фиг. 1).

Далее обследуют скважины с применением видеоэндоскопа, позволяющего выполнять фото- и видеофиксацию. Для определения положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин применяется отвес - 1, закрепленный на направляющих штангах, используемых для видеоэндоскопа в скважинах (Фиг. 2). На полученных снимках определяются параметры обозначенных контуров - их размеры - d1, d2. Направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1 - 3, определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига скважины относительно ΔН и т.д.

Скважины картируют. Строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка (Фиг. 3а) или сдвига (Фиг. 3б).

Сжатие скважин зависит от величины максимальных напряжений σ1. Чем больше максимальные напряжения, тем больше относительные деформации

где d1 - начальный диаметр скважины,

d2 - наименьший диаметр деформируемой скважины,

К1 - эмпирический коэффициент, учитывающий физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений.

Способ позволяет фиксировать смещения стенок скважин при обработке фото- и видеоматериалов с точностью до 0,1 мм, что соответствует точности определения относительных деформаций 0,001. Устанавливается зависимость деформаций ε - скважины или шпура от уровня напряженности (диапазон напряжений) для локального участка месторождения и конкретного типа горной породы с учетом его физико-механических свойств и структурной нарушенности. С увеличением параметров деформирования и сдвига возрастают напряжения, действующие в массиве горных пород.

Для достоверности получения конечных результатов для конкретного участка месторождения необходимо картировать не единичные скважины, а максимальное их количество - технологических, например, взрывных, а также пробуренных специально.

В качестве базовых данных для определения диапазона значений напряжений на исследуемом участке используется сопоставление параметров деформирования скважин от уровня напряженности массив, полученные с помощью методов дискования керна или разгрузки.

Способ позволяет в относительно короткие временные промежутки оценивать напряженно-деформированное состояние массива горных пород: направление действия максимальных главных нормальных напряжений и диапазон их значений, относительные деформации, местоположение зон сдвига и сжатия скважин с помощью видеоэндоскопа, а также прогнозировать развитие деформационных процессов для обеспечения безопасной и эффективной эксплуатации месторождений твердых полезных ископаемых.

Похожие патенты RU2598009C1

название год авторы номер документа
ВНУТРИСКВАЖИННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ЗОН ПОВРЕЖДЕНИЯ ГОРНЫХ ПОРОД 2015
  • Рыльникова Марина Владимировна
  • Еременко Виталий Андреевич
  • Есина Екатерина Николаевна
  • Лушников Вадим Николаевич
  • Семенякин Евгений Николаевич
RU2583032C1
СПОСОБ ОЦЕНКИ СТРУКТУРНО НАРУШЕННЫХ И УДАРООПАСНЫХ МАССИВОВ ГОРНЫХ ПОРОД 2014
  • Рыльникова Марина Владимировна
  • Еременко Виталий Андреевич
  • Есина Екатерина Николаевна
  • Лушников Вадим Николаевич
  • Семенякин Евгений Николаевич
RU2566885C1
Способ определения динамики процессов деформирования породы горного массива и устройство для его реализации 2016
  • Еременко Виталий Андреевич
  • Рыльникова Марина Владимировна
  • Есина Екатерина Николаевна
  • Семенякин Евгений Николаевич
  • Поставнин Борис Николаевич
  • Кондратенко Андрей Сергеевич
  • Лушников Вадим Николаевич
RU2624746C1
Способ определения напряженного состояния массива горных пород 2021
  • Тюпин Владимир Николаевич
  • Пономаренко Константин Борисович
RU2768768C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛАВНЫХ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Белявский Ю.Г.
  • Пискарев В.К.
  • Удалов А.Е.
RU2029084C1
СПОСОБ ПОЛУЧЕНИЯ ЗАДАННОЙ СТЕПЕНИ ДРОБЛЕНИЯ ТРЕЩИНОВАТОГО ГОРНОГО МАССИВА И ТРЕБУЕМОГО КОЭФФИЦИЕНТА ИСПОЛЬЗОВАНИЯ ШПУРА ВЗРЫВОМ 2010
  • Тюпин Владимир Николаевич
  • Святецкий Виктор Станиславович
RU2442957C2
СПОСОБ СОЗДАНИЯ РАЗГРУЗОЧНЫХ ЩЕЛЕЙ В УДАРООПАСНОМ ГОРНОМ МАССИВЕ ТЕРМООБРАБОТКОЙ СКВАЖИН 2012
  • Смирнов Владимир Алексеевич
  • Работа Эдуард Николаевич
  • Гончаров Евгений Владимирович
  • Шванкин Михаил Васильевич
  • Мулев Сергей Николаевич
RU2493368C1
СПОСОБ УКРЕПЛЕНИЯ ПОРОД ШТАНГАМИ В ГОРНЫХ ВЫРАБОТКАХ 1997
  • Стажевский С.Б.(Ru)
  • Изаксон В.Ю.(Ru)
  • Власов В.Н.(Ru)
  • Колимвас Дмитрий
RU2132464C1
Способ оценки удароопасности массива горных пород 1990
  • Протасов Юрий Иванович
  • Городниченко Василий Иванович
  • Трушкин Александр Николаевич
SU1745968A1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2007
  • Вознесенский Владимир Александрович
  • Филимонов Юрий Леонидович
  • Шкуратник Владимир Лазаревич
RU2339815C1

Иллюстрации к изобретению RU 2 598 009 C1

Реферат патента 2016 года ВНУТРИСКВАЖИННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ ДЕЙСТВИЯ И ЗНАЧЕНИЙ ГЛАВНЫХ НАПРЯЖЕНИЙ

Изобретение относится к горному делу и может быть использовано для определения направления действия и значений главных напряжений в горном массиве, оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения при подземной разработке месторождений полезных ископаемых. Технический результат заключается в повышении точности определения направления главных напряжений, обеспечении безопасности и эффективности освоения месторождения. Способ включает бурение скважин или шпуров в подземных горных выработках длиной от 5 м, диаметром от 40 мм. На внутреннюю поверхность скважин наносят метки в виде окружности маркером или краской. Определяют положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин с помощью видеоэндоскопа обследуют скважины. По полученным снимкам оперативно определяют наименьший диаметр скважины, направление которого соответствует направлению действия максимальных напряжений в массиве. На снимках определяют параметры обозначенных контуров d1, d2, при этом направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1. Определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига ΔH. Строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка или сдвига. Деформации скважины определяют в зависимости от d1 - начального диаметра скважины, d2 - наименьшего диаметра деформируемой скважины и K1 - эмпирического коэффициента, учитывающего физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений. 3 ил.

Формула изобретения RU 2 598 009 C1

Внутрискважинный способ определения направления действия и значений главных напряжений, включающий бурение скважин или шпуров в подземных горных выработках, отличающийся тем, что бурят скважины или шпуры длиной от 5 м, диаметром от 40 мм, на внутреннюю поверхность скважин наносят метки в виде окружности маркером или краской, определяют положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин с помощью видеоэндоскопа обследуют скважины, по полученным снимкам оперативно определяют наименьший диаметр скважины, направление которого соответствует направлению действия максимальных напряжений в массиве, на полученных снимках определяют параметры обозначенных контуров d1, d2, при этом направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1, определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига скважины относительно ΔH, скважины картируют, строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка или сдвига, а т.к. сжатие скважин зависит от величины максимальных напряжений σ1, то деформации скважины определяют по формуле

где d1 - начальный диаметр скважины,
d2 - наименьший диаметр деформируемой скважины,
K1 - эмпирический коэффициент, учитывающий физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений.

Документы, цитированные в отчете о поиске Патент 2016 года RU2598009C1

Способ определения упругих свойств массива горных пород 1979
  • Анцибор Виталий Яковлевич
SU872757A1
Способ оценки уровня напряженного состояния массива горных пород и прогноза его удароопасности 1988
  • Лазаревич Леонид Моисеевич
  • Лазаревич Тамара Ивановна
  • Еременко Андрей Иванович
  • Ваганова Валентина Алексеевна
SU1671896A1
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИОННЫХ ХАРАКТЕРИСТИК МАССИВА ГОРНЫХ ПОРОД 2004
  • Гусев Владимир Николаевич
  • Волохов Евгений Михайлович
  • Долгих Михаил Владимирович
  • Савков Борис Михайлович
RU2276263C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ ГОРНЫХ ПОРОД В ЗОНАХ, НЕДОСТУПНЫХ ДЛЯ ПРЯМЫХ ИЗМЕРЕНИЙ 2012
  • Сученко Владимир Николаевич
  • Иофис Михаил Абрамович
  • Гришин Александр Викторович
  • Есина Екатерина Николаевна
  • Логвиненко Михаил Константинович
  • Быкова Анна Андреевна
  • Мыцких Ольга Сергеевна
RU2509889C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛАВНЫХ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 1994
  • Белявский Ю.Г.
  • Удалов А.Е.
RU2064579C1
CN 101526009 B, 24.10.2012.

RU 2 598 009 C1

Авторы

Еременко Виталий Андреевич

Рыльникова Марина Владимировна

Есина Екатерина Николаевна

Лушников Вадим Николаевич

Семенякин Евгений Николаевич

Кондратенко Андрей Сергеевич

Барнов Николай Георгиевич

Даты

2016-09-20Публикация

2015-07-09Подача