Изобретения относятся к области радиосвязи и могут быть использованы для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные средства радиосвязи с заданным количеством радиоканалов.
Известен способ генерации высокочастотного сигнала, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, организации внутренней обратной связи в нелинейном элементе путем использования в качестве него двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условий согласования нелинейного элемента с нагрузкой (см. Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа»., - 2006, с. 414-417).
Известно устройство генерации высокочастотного сигнала, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине падающего участка вольтамперной характеристики двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением, реактивного четырехполюсника, нагрузки в виде параллельного колебательного контура, при этом параметры контура, двухполюсного нелинейного элемента и варикапа выбраны из условия обеспечения заданных амплитуды и частоты генерируемого высокочастотного сигнала (см. Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа»., - 2006, с. 414-417).
Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внутренней обратной связи в двухполюсном нелинейном элементе на участке с падающей вольтамперной характеристикой возникает отрицательное дифференциальное сопротивление, которое в силу согласования с помощью реактивного четырехполюсника компенсирует потери в контуре. Благодаря этому, колебание с частотой, равной резонансной частоте колебательного контура, усиливается до момента увеличения амплитуды этого колебания до уровня, при котором амплитуда выходит за пределы падающего участка вольтамперной характеристики. Наступает стационарный режим.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ генерации высокочастотного сигнала, основанный на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, организации внешней положительной обратной связи между нагрузкой и управляющим электродом трехполюсного нелинейного элемента, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условий согласования нелинейного элемента с нагрузкой (см. Гоноровский И.С. Радиотехнические цепи и сигналы - М: «Дрофа»., - 2006, с. 383-401).
Наиболее близким по технической сущности и достигаемому результату (прототипом) является устройство генерации высокочастотного сигнала, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине квазилинейного участка проходной вольтамперной характеристики транзистора, реактивного четырехполюсника, нагрузки в виде параллельного колебательного контура, RC - цепи внешней положительной обратной связи между нагрузкой и управляющим электродом транзистора, при этом параметры контура, транзистора и варикапа выбраны из условия обеспечения заданных амплитуды и частоты генерируемого высокочастотного сигнала (см. Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа»., - 2006, с. 383-401).
Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию цепи положительной обратной связи, колебание с частотой, равной резонансной частоте колебательного контура, поступает на управляющий электрод транзистора, который в силу согласования с помощью реактивного четырехполюсника начинает работать в режиме усиления до момента увеличения амплитуды этого колебания до уровня, при котором наступает режим насыщения (ограничения амплитуды). Наступает стационарный режим.
Недостатками этих способов и устройств является генерация высокочастотного сигнала только на одной частоте. Кроме того, не указывается, каким образом необходимо выбирать значения параметров реактивного четырехполюсника, при которых наступает режим возбуждения и стационарный режим. Особенно остро возникает этот вопрос при проектировании устройств генерации в диапазонах ВЧ и УВЧ, на которых обязательно нужно учитывать реактивные составляющие параметров нелинейных элементов. В настоящее время классическая теория радиотехнических цепей это не учитывает. Более того, с помощью реактивных четырехполюсников не всегда удается обеспечить условия возникновения генерации, поскольку они имеют определенные области физической реализуемости (области изменения действительной и мнимой составляющих сопротивления нагрузки), в пределах которых реализуются условия согласования (Головков А.А. Комплексированные радиоэлектронные устройства. М.: Радио и связь, 1996. - 128 с.).
Техническим результатом изобретения является повышение диапазона генерируемых колебаний при использовании комплексных четырехполюсников с сосредоточенными параметрами, генерация высокочастотных сигналов на заданном количестве частот и расширение области физической реализуемости, что позволяет формировать сложные сигналы и создавать эффективные устройства генерации для средств радиосвязи с заданным количеством радиоканалов при любых заданных частотных характеристик нагрузки.
1. Указанный результат достигается тем, что в известном способе генерации высокочастотных сигналов, состоящем в том, что энергию источника постоянного напряжения преобразуют в энергию высокочастотного сигнала за счет скачкообразного изменения амплитуды источника постоянного напряжения в момент его включения, усиливают и ограничивают амплитуду высокочастотного сигнала с помощью трехполюсного нелинейного элемента и организации обратной связи, выполняют условия возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условия согласования нелинейного элемента с нагрузкой с помощью четырехполюсника, дополнительно в качестве обратной связи используют внутреннюю обратную связь трехполюсного нелинейного элемента в виде межэлектродных связей, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования одновременно выполняют на заданном количестве частот за счет того, что осуществляют взаимодействие высокочастотных сигналов с радиотехнической цепью в виде трехполюсного нелинейного элемента с межэлектродными связями, включенного между выходом четырехполюсника и нагрузкой по схеме с общим одним из трех электродов, четырехполюсник выполняют комплексным из реактивных и резистивных элементов, к входу комплексного четырехполюсника подключают дополнительный комплексный двухполюсник, значения элемента z22n матрицы сопротивлений комплексного четырехполюсника выбирают из условия обеспечения стационарного режима генерации в виде равенства нулю знаменателя коэффициента передачи одновременно на всех заданных частотах генерируемых высокочастотных сигналов при неизменной амплитуде источника постоянного напряжения в соответствии со следующим математическим выражением:
,
где ; , , , - заданные значения соответствующих элементов матрицы сопротивлений трехполюсного нелинейного элемента с межэлектродными связями на заданном количестве частот при заданной амплитуде постоянного напряжения; z11n, z21n - заданные значения соответствующих элементов матрицы сопротивлений комплексного четырехполюсника на заданном количестве частот; z0n - заданные значения комплексных сопротивлений дополнительного двухполюсника на заданном количестве частот; zнn - заданные значения комплексных сопротивлений нагрузки на заданном количестве частот; n=1, 2… - номера частот.
2. Указанный результат достигается тем, что в устройстве генерации высокочастотных сигналов, состоящем из источника постоянного напряжения, трехполюсного нелинейного элемента, четырехполюсника и нагрузки, дополнительно использован нелинейный элемент с межэлектродными связями, четырехполюсник выполнен комплексным в виде каскадно-соединенных двух Г-образных соединений четырех двухполюсников с комплексными сопротивлениями z1n, z2n, z3n, z4n, четвертый двухполюсник каскадно-соединенных двух Г-образных соединений сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2, трехполюсный нелинейный элемент с межэлектродными связями включен между выходом комплексного четырехполюсника и нагрузкой по схеме с общим одним из трех электродов, к входу комплексного четырехполюсника подключен дополнительный двухполюсник с комплексным сопротивлением, а значения параметров четвертого двухполюсника каскадно-соединенных двух Г-образных соединений определены в соответствии со следующими математическими выражениями:
; ;
;
;
где r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления четвертого комплексного двухполюсника комплексного четырехполюсника на двух частотах; - оптимальные значения сопротивления четвертого комплексного двухполюсника комплексного четырехполюсника на двух частотах;
; , , , - заданные значения соответствующих элементов матрицы сопротивлений трехполюсного нелинейного элемента с межэлектродными связями на заданном количестве частот при заданной амплитуде постоянного напряжения; z1n, Z2n, Z3n - заданные значения сопротивлений первого, второго и третьего комплексных двухполюсников комплексного четырехполюсника на двух частотах; z0n - заданные значения комплексных сопротивлений дополнительного двухполюсника на двух частотах; zнn - заданные значения комплексных сопротивлений нагрузки на двух частотах; ω1,2=2πf1,2; n=1,2 - номера заданных двух частот f1,2.
На фиг. 1 показана схема устройства генерации высокочастотных сигналов (прототип), реализующего способ-прототип.
На фиг. 2 показана структурная схема предлагаемого устройства по п. 2., реализующая предлагаемый способ по п. 1.
На фиг. 3 приведена схема комплексного четырехполюсника, входящего в предлагаемое устройство, схема которого представлена на фиг. 2.
На фиг. 4 приведена схема четвертого комплексного двухполюсника, входящего в четырехполюсник, схема которого представлена на фиг. 3.
Устройство-прототип (Фиг. 1), реализующее способ-прототип, содержит цепь прямой передачи в виде трехполюсного нелинейного элемента VT-1, подключенного к источнику постоянного напряжения-2, первого согласующе-фильтрующего устройства (СФУ)-3 (первого реактивного четырехполюсника или первого согласующего четырехполюсника) и колебательного контура на элементах L-4, R-5, C-6, который является нагрузкой-7. Первое СФУ-3 включено между выходным электродом трехполюсного нелинейного элемента и нагрузкой. Между нагрузкой и управляющим электродом трехполюсного нелинейного элемента включено второе СФУ-9 (второй реактивный четырехполюсник или второй согласующий четырехполюсник) с подключенными к ее входу первым двухполюсником-8 и к выходу вторым двухпоюсником-10 с комплексными сопротивлениями в поперечные цепи. Все это вместе образует цепь внешней обратной связи. Первый двухполюсник-8 подключен к нагрузке. Второй двухполюсник-10 подключен к управляющему электроду трехполюсного нелинейного элемента.
Принцип действия устройства генерации высокочастотных сигналов (прототипа), реализующего способ-прототип, состоит в следующем.
При включении источника постоянного напряжения-2 в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внешней обратной связи, согласования с помощью первого реактивного четырехполюсника-3 выходного электрода трехполюсного нелинейного элемента и нагрузки (цепи прямой передачи), согласования с помощью цепи обратной связи (первого двухполюсника-8 с комплексным сопротивлением, второго реактивного четырехполюсника-9 и второго двухполюсника-10 с комплексным сопротивлением) нагрузки и управляющего электрода трехполюсного нелинейного элемента компенсируются потери в контуре L-4, R-5, C-6. Благодаря этому обратная связь становится положительной и реализуются условия баланса фаз и амплитуд - условия возбуждения электромагнитных колебаний. В результате колебание с частотой, равной резонансной частоте колебательного контура, подается на управляющий электрод трехполюсного нелинейного элемента, который на начальном этапе работает в режиме усиления. Амплитуда этого колебания усиливается до момента ее увеличения до уровня, при котором наступает режим ограничения трехполюсного нелинейного элемента. Наступает стационарный режим генерации.
Недостатки способа-прототипа и устройства его реализации описаны выше.
Предлагаемое устройство по п. 2 (фиг. 2), реализующее предлагаемый способ по п. 1, содержит трехполюсный нелинейный элемент-1 с известными элементами матрицы сопротивлений ; ; на заданных частотах генерируемых сигналов, подключенный к источнику постоянного напряжения-2. Дополнительный двухполюсник-11 имитирует сопротивление z0n=r0n+jx0n источника высокочастотных колебаний в режиме усиления, возникающих при включении источника постоянного напряжения-2 в момент скачкообразного изменения амплитуды его напряжения в режиме генерации и подключен к входу комплексного четырехполюсника-12. Трехполюсный нелинейный элемент-1 включен по высокой частоте между выходом четырехполюсника-12 и нагрузкой-13 с сопротивлениями zнn=rнn+jxнn на заданных частотах. Четырехполюсник-12 (согласующее-фильтрующее устройство (СФУ)) выполнен комплексным в виде двух каскадно-соединенных Г-образных соединений четырех комплексных двухполюсников (Фиг. 3) с заданными сопротивлениями z1n - 14, z2n - 15, z3n - 16, z4n - 17. Синтез генератора (выбор значений элемента z22 матрицы сопротивлений СФУ, схемы четвертого двухполюсника СФУ из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1 - 18, первой катушки с индуктивностью L1 - 19 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 - 20 и второй катушки с индуктивностью L2 - 21 (Фиг. 4) и значений этих параметров) осуществлен по критерию обеспечения баланса амплитуд и баланса фаз путем реализации равенства нулю знаменателя коэффициента передачи устройства генерации в режиме усиления одновременно на двух заданных частотах генерируемых сигналов при постоянной амплитуде постоянного напряжения. В режиме генерации источник входного высокочастотного сигнала отключается и вместо него устанавливается короткозамыкающая перемычка.
Предлагаемое устройство функционирует следующим образом.
При включении источника постоянного напряжения-2 в силу скачкообразного изменения амплитуды во всей цепи возникают колебания, спектр которых занимает весь частотный радиодиапазон. Амплитуды этих колебаний быстро затухают. Однако благодаря наличию внутренней обратной связи (образуется за счет имеющихся межэлектродных связей трехполюсного нелинейного элемента, например межэлектродных емкостей) в цепи возникает отрицательное сопротивление, которое в силу синтеза указанным образом комплексного четырехполюсника-12 компенсирует потери во всей цепи одновременно на двух заданных частотах. Амплитуды колебаний с заданными частотами усиливаются до определенных уровней и затем ограничиваются. Благодаря этому, колебания с заданными двумя частотами усиливаются до момента увеличения амплитуд этих колебаний до уровня, при котором амплитуда выходит за пределы квазилинейного участка проходной вольтамперной характеристики. Наступает стационарный режим. Окончательно в результате взаимодействия сигналов на двух частотах с нелинейным элементов возникают продукты нелинейного взаимодействия с комбинационными частотами ωn=Ιω1±Κω2, I, K=0, 1, 2….
Докажем возможность реализации указанных свойств. Пусть известны зависимости сопротивления z0=r0+jx0 воображаемого источника сигнала, возникающего при включении источника постоянного напряжения, нагрузки zн=rн+jxн и зависимости действительной и мнимой составляющих элементов матрицы сопротивлений трехполюсного нелинейного элемента
и соответствующая ей классическая матрица передачи:
где . Знак * введен в интересах обеспечения отличия элементов матрицы сопротивлений трехполюсного элемента от соответствующих элементов матриц сопротивлений комплексного четырехполюсника или СФУ:
и соответствующей классической матрицы передачи:
где - определитель матрицы (3) с учетом условия взаимности комплексного четырехполюсника z12=-z21.
Перемножим матрицы (4) и (2). С учетом условий нормировки (Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1971. с. 34-36) получим общую нормированную классическую матрицу передачи всего устройства генерации в режиме усиления:
Используя известные соотношения между элементами классической матрицы передачи и элементами матрицы рассеяния (там же) с учетом (5) получим выражение для коэффициента передачи:
Физически реализуемая передаточная функция связана с коэффициентом передачи простым соотношением: .
Покажем, что условие обеспечения стационарного режима генерации (условие баланса амплитуд и баланса фаз) соответствует равенству нулю знаменателя коэффициента передачи (6).
Знаменатель коэффициента передачи в режиме усиления представим в виде, соответствующем условию возникновения стационарного режима генерации (Куликовский А.А. Устойчивость активных линеаризованных цепей с усилительными приборами нового типа. М-Л.: ГЭИ, 1962. 192 с.): , где первое слагаемое - это сопротивление z0 пассивной части генератора; второе слагаемое с учетом матриц передачи (2), (4) - это входное сопротивление активной части генератора в виде комплексного четырехполюсника, нагруженного на входное сопротивление трехполюсного нелинейного элемента, нагруженного на сопротивление zн нагрузки. Если это условие записать в виде другого равенства , то ее можно трактовать как условие баланса амплитуд и баланса фаз 1-КВ=0 (Гоноровский И.С. Радиотехнические цепи и сигналы. - М: «Дрофа»., - 2006, с. 383-401) для эквивалентной цепи с внешней положительной обратной связью.
Решение комплексного уравнения, сформированного из равенства нулю знаменателя (6):
Полученная взаимосвязь элементов матрицы сопротивлений СФУ (7) с учетом заданных частотных зависимостей z11, z21, z0, zн,
В соответствии с изложенным алгоритмом получены выражения для отыскания оптимальной аппроксимации частотной зависимости комплексного сопротивления четвертого двухполюсника СФУ (комплексного четырехполюсника) в виде каскадно-соединенных двух Г-образных соединений (фиг. 4) из четырех комплексных двухполюсников:
где n=1, 2… - номера частот интерполяции. Сопротивления z1n, z2n, z3n могут быть выбраны произвольно или исходя из каких-либо других физических соображений. Индекс n необходимо ввести и в другие обозначения физических величин, явным образом зависящих от частоты. Физический смысл решения (8) состоит в том, что частотная зависимость комплексного сопротивления четвертого двухполюсника СФУ должна быть обратной по знаку и равной по модулю суммарной частотной зависимости входного комплексного сопротивления устройства справа от z4n и входного комплексного сопротивления устройства слева от z4n. При этом обеспечивалась бы генерация на всем спектре частот. Однако реализация (8) в сплошной, даже очень узкой полосе частот, не возможна.
Для реализации оптимальной аппроксимации (8) на конечном числе частот методом интерполяции необходимо сформировать двухполюсник с сопротивлением z4n из не менее чем 2Ν (Ν - число частот интерполяции) элементов типа R, L, C, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсника на заданных частотах, определенным по формулам (8), и решить сформированную таким образом систему 2N уравнений относительно 2N выбранных параметров R, L, C. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например, из условия физической реализуемости. Пусть четвертый двухполюсник СФУ с сопротивлением z4n сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 (фиг. 4). Комплексное сопротивление четвертого двухполюсника СФУ:
Разделим в (9) между собой действительную и мнимую части и для N=2 составим систему четырех уравнений:
Решение:
;
;
r1, r2, х1, х2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах.
Реализация оптимальных аппроксимаций частотных характеристик четырехполюсника (7) с помощью каскадно-соединенных двух Г-образных звеньев (8) и четвертого двухполюсника этих звеньев с помощью (9), (11), обеспечивает реализацию условия баланса амплитуд и баланса фаз одновременно на двух заданных частотах. В результате взаимодействия сигналов на двух частотах с нелинейным элементом в режиме генерации возникают продукты нелинейного взаимодействия с комбинационными частотами ωn=Ιω1±Κω2, I, K=0, 1, 2…
Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение устройства генерации в виде, показанном на фиг. 2, выполнение четырехполюсника комплексным в виде указанным выше способом соединенных между собой четырех двухполюсников (фиг. 3), формирования четвертого двухполюсника из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 (фиг. 4), выбора значений элемента z22 матрицы сопротивлений комплексного четырехполюсника, выбора значений параметров четвертого двухполюсника СФУ из условия обеспечения стационарного режима генерации на двух частотах при неизменном состоянии трехполюсного нелинейного элемента), обеспечивает одновременно формирование высокочастотных сигналов на заданных частотах при постоянной амплитуде источника постоянного напряжения.
Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью транзисторы (p-n-p или n-p-n), индуктивности, резисторы и емкости, сформированные в заявленную схему комплексного четырехполюсника. Значения параметров резистивных элементов и индуктивностей, входящих в схему четвертого двухполюсника СФУ, могут быть однозначно определены с помощью математических выражений, приведенных в формуле изобретения.
Технико-экономическая эффективность предложенных способа и устройства заключается в одновременном обеспечении генерации высокочастотного сигнала на заданном количестве частот за счет выбора схемы и значений параметров элементов R,L,C комплексного четырехполюсника по критерию обеспечения условий баланса фаз и амплитуд на этих частотах при неизменном состоянии нелинейного двухполюсного элемента с отрицательным дифференциальным сопротивлением, что позволяет формировать сложные сигналы и создавать средства радиосвязи, функционирующие на заданном количестве радиоканалах при произвольных характеристиках нагрузки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2018 |
|
RU2698543C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2018 |
|
RU2709602C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ | 2011 |
|
RU2475934C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2589305C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2568374C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2568925C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2010 |
|
RU2483425C2 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2595928C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2599352C2 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2014 |
|
RU2589407C1 |
Изобретение относится к области радиосвязи. Способ генерации высокочастотных сигналов состоит в том, что энергию источника постоянного напряжения преобразуют в энергию высокочастотного сигнала за счет скачкообразного изменения амплитуды источника постоянного напряжения в момент его включения, усиливают и ограничивают амплитуду высокочастотного сигнала с помощью трехполюсного нелинейного элемента и организации обратной связи. Также выполняют условия возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условия согласования нелинейного элемента с нагрузкой с помощью четырехполюсника. В качестве обратной связи используют внутреннюю обратную связь трехполюсного нелинейного элемента в виде межэлектродных связей. Условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования одновременно выполняют на заданном количестве частот за счет того, что осуществляют взаимодействие высокочастотных сигналов с радиотехнической цепью в виде трехполюсного нелинейного элемента с межэлектродными связями, включенного между выходом четырехполюсника и нагрузкой по схеме с общим одним из трех электродов. Четырехполюсник выполняют комплексным из реактивных и резистивных элементов, к входу комплексного четырехполюсника подключают дополнительный комплексный двухполюсник, значения элемента z22n матрицы сопротивлений комплексного четырехполюсника выбирают из условия обеспечения стационарного режима генерации в виде равенства нулю знаменателя коэффициента передачи одновременно на всех заданных частотах генерируемых высокочастотных сигналов при неизменной амплитуде источника постоянного напряжения. Технический результат заключается в обеспечении возможности одновременной генерации высокочастотного сигнала на заданном количестве частот. 2 н.п. ф-лы, 4 ил.
1. Способ генерации высокочастотных сигналов, состоящий в том, что энергию источника постоянного напряжения преобразуют в энергию высокочастотного сигнала за счет скачкообразного изменения амплитуды источника постоянного напряжения в момент его включения, усиливают и ограничивают амплитуду высокочастотного сигнала с помощью трехполюсного нелинейного элемента и организации обратной связи, выполняют условия возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемого высокочастотного сигнала, и условия согласования нелинейного элемента с нагрузкой с помощью четырехполюсника, отличающийся тем, что в качестве обратной связи используют внутреннюю обратную связь трехполюсного нелинейного элемента в виде межэлектродных связей, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования одновременно выполняют на заданном количестве частот за счет того, что осуществляют взаимодействие высокочастотных сигналов с радиотехнической цепью в виде трехполюсного нелинейного элемента с межэлектродными связями, включенного между выходом четырехполюсника и нагрузкой по схеме с общим одним из трех электродов, четырехполюсник выполняют комплексным из реактивных и резистивных элементов, к входу комплексного четырехполюсника подключают дополнительный комплексный двухполюсник, значения элемента z22n матрицы сопротивлений комплексного четырехполюсника выбирают из условия обеспечения стационарного режима генерации в виде равенства нулю знаменателя коэффициента передачи одновременно на всех заданных частотах генерируемых высокочастотных сигналов при неизменной амплитуде источника постоянного напряжения в соответствии со следующим математическим выражением:
где - заданные значения соответствующих элементов матрицы сопротивлений трехполюсного нелинейного элемента с межэлектродными
связями на заданном количестве частот при заданной амплитуде постоянного напряжения; z11n, z21n - заданные значения соответствующих элементов матрицы сопротивлений комплексного четырехполюсника на заданном количестве частот; z0n - заданные значения комплексных сопротивлений дополнительного двухполюсника на заданном количестве частот; zнn - заданные значения комплексных сопротивлений нагрузки на заданном количестве частот; n=1, 2… - номера частот.
2. Устройство генерации высокочастотных сигналов, состоящее из источника постоянного напряжения, трехполюсного нелинейного элемента, четырехполюсника и нагрузки, отличающееся тем, что использован трехполюсный нелинейный элемент с межэлектродными связями, четырехполюсник выполнен комплексным в виде каскадно-соединенных двух Г-образных соединений четырех двухполюсников с комплексными сопротивлениями z1n, z2n, z3n, z4n, четвертый двухполюсник каскадно-соединенных двух Г-образных соединений сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2, трехполюсный нелинейный элемент с межэлектродными связями включен между выходом комплексного четырехполюсника и нагрузкой по схеме с общим одним из трех электродов, к входу комплексного четырехполюсника подключен дополнительный двухполюсник с комплексным сопротивлением, а значения параметров четвертого двухполюсника каскадно-соединенных двух Г-образных соединений определены в соответствии со следующими математическими выражениями:
где r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления четвертого комплексного двухполюсника комплексного четырехполюсника на двух частотах; - оптимальные значения сопротивления четвертого комплексного двухполюсника комплексного четырехполюсника на двух частотах;
- заданные значения соответствующих элементов матрицы сопротивлений трехполюсного нелинейного элемента с межэлектродными связями на заданном количестве частот при заданной амплитуде постоянного напряжения; z1n, z2n, z3n - заданные значения сопротивлений первого, второго и третьего комплексных двухполюсников комплексного четырехполюсника на двух частотах; z0n - заданные значения комплексных сопротивлений дополнительного двухполюсника на двух частотах; zнn - заданные значения комплексных сопротивлений нагрузки на двух частотах; ω1,2=2πf1,2; n=1, 2 - номера заданных двух частот f1,2.
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2486638C1 |
СПОСОБ ГЕНЕРАЦИИ И ЧАСТОТНОЙ МОДУЛЯЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2486637C1 |
СПОСОБ ГЕНЕРАЦИИ ВЫСОКОЧАСТОТНЫХ СИГНАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2010 |
|
RU2482600C2 |
US 4982170 A1, 01.01.1991. |
Авторы
Даты
2016-09-27—Публикация
2014-10-21—Подача