ТЕПЛОИЗОЛЯЦИЯ АГРЕГАТОВ ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО ОБЪЕКТА И СПОСОБ ЕЕ МОНТАЖА Российский патент 2016 года по МПК B64G1/58 

Описание патента на изобретение RU2600022C1

Изобретение относится к ракетно-космической технике, в частности к конструкции теплоизоляции агрегатов двигательной установки космического объекта.

Известен ракетный разгонный блок по патенту РФ №2153447, в котором блок подачи криогенного компонента размещен на криогенном баке. Блок подачи криогенного компонента состоит из расходного клапана, который размещен во внутренней полости криогенного бака, и бустерного турбонасосного агрегата, находящегося вне криогенного бака. Бустерный турбонасосный агрегат включает в себя насос и турбину. Работа турбины в полете обеспечивается подачей испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя. На криогенный бак нанесены пакеты экранно-вакуумной теплоизоляции (патент РФ №2384492 - прототип для заявляемой теплоизоляции и способа монтажа), которые покрыты гермооболочкой (патент РФ №2413661).

Несмотря на то что тепловой режим криогенного бака обеспечивается наличием на нем экранно-вакуумной теплоизоляции, в криогенный бак поступает тепловой поток от маршевого двигателя, увеличивая тем самым потери криогенного компонента, - недостаток прототипа.

Задачей предложенной теплоизоляции агрегатов двигательной установки космического объекта, содержащей теплоизоляцию из пакетов экранно-вакуумной теплоизоляции криогенного бака и гермооболочку криогенного бака поверх них из мягкого неметаллического материала, причем на криогенном баке размещен блок подачи криогенного компонента, состоящий из расходного клапана и бустерного турбонасосного агрегата с насосом и турбиной, работающей от подачи испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя двигательной установки, является уменьшение потерь криогенного компонента за счет снижения уровня теплового потока, поступающего в криогенный бак от турбины бустерного турбонасосного агрегата и маршевого двигателя двигательной установки космического объекта.

Задача решается за счет того, что в теплоизоляцию агрегатов двигательной установки космического объекта с блоком подачи криогенного компонента, расположенным на криогенном баке и состоящим из расходного клапана и бустерного турбонасосного агрегата с насосом и турбиной, работающей от подачи испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя двигательной установки, дополнительно введена теплоизоляция блока подачи криогенного компонента, состоящая из теплоизоляционного материала, размещенных поверх него пакетов экранно-вакуумной теплоизоляции и гермооболочки блока подачи криогенного компонента поверх нее, расположенной с зазором к экранно-вакуумной теплоизоляции блока подачи криогенного компонента, которая закреплена на расходном трубопроводе, на трубопроводе подачи испаренного криогенного компонента и на трубопроводе управляющего давления расходным клапаном, при этом теплоизоляция блока подачи криогенного компонента сопряжена с теплоизоляцией криогенного бака, причем экранно-вакуумная теплоизоляция криогенного бака содержит m пакетов, а экранно-вакуумная теплоизоляция блока подачи криогенного компонента содержит n пакетов, при этом n-й пакет контактирует торцом с наружной поверхностью m-го пакета, а наружная поверхность n-го пакета контактирует с торцевой поверхностью m-1 пакета, причем указанная последовательность повторяется необходимое число раз, при этом увеличивается термическое сопротивление в стыках пакетов, гермооболочка теплоизоляции блока подачи криогенного компонента закреплена к гермооболочке теплоизоляции криогенного бака через переходное кольцо, которое воспринимает распорную силу, возникающую от внутреннего давления в гермооболочке теплоизоляции криогенного бака.

Задача решается за счет того, что в способе монтажа теплоизоляции агрегатов двигательной установки космического объекта, включающем нанесение экранно-вакуумной теплоизоляции на криогенный бак, после установки блока подачи криогенного компонента на криогенный бак наносят теплоизоляционный материал на наружные поверхности насоса бустерного турбонасосного агрегата, выравнивая его поверхность, затем гермооболочку теплоизоляции блока подачи криогенного компонента закрепляют на расходном трубопроводе, на трубопроводе подачи испаренного криогенного компонента и на трубопроводе управляющего давления расходным клапаном, далее устанавливают пакеты экранно-вакуумной теплоизоляции блока подачи криогенного компонента поверх теплоизоляционного материала, затем гермооболочку теплоизоляции блока подачи криогенного компонента и гермооболочку теплоизоляции криогенного бака накладывают друг на друга и закрепляют их на наружной поверхности переходного кольца.

На фиг. 1 представлена теплоизоляция блока подачи криогенного компонента, на фиг. 2 представлена схема связи агрегатов двигательной установки, где:

1 - блок подачи криогенного компонента;

2- расходный клапан;

3 - бустерный турбонасосный агрегат;

4 - насос;

5 - турбина;

6 - маршевый двигатель;

7 - криогенный бак;

8 - пакеты экранно-вакуумной теплоизоляции блока подачи криогенного компонента;

9 - гермооболочка теплоизоляции блока подачи криогенного компонента;

10 - теплоизоляционный материал;

11 - трубопровод подачи испаренного криогенного компонента;

12 - расходный трубопровод;

13 - трубопровод управляющего давления;

14 - пакеты экранно-вакуумной теплоизоляции криогенного бака;

15 - гермооболочка теплоизоляции криогенного бака;

16 - переходное кольцо;

17 - кольца;

18 - шнур;

19 - рукава;

20 - рубашка камеры сгорания маршевого двигателя.

В теплоизоляцию агрегатов двигательной установки космического объекта с блоком подачи криогенного компонента 1, расположенным на криогенном баке 7 и состоящим из расходного клапана 2 и бустерного турбонасосного агрегата 3 с насосом 4 и турбиной 5, работающей от подачи испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя 20 двигательной установки, дополнительно введена теплоизоляция блока подачи криогенного компонента 1, состоящая из теплоизоляционного материала 10, размещенных поверх него пакетов экранно-вакуумной теплоизоляции и гермооболочки блока подачи криогенного компонента 8 и 9 поверх нее, расположенной с зазором к экранно-вакуумной теплоизоляции блока подачи криогенного компонента 8, которая закреплена на расходном трубопроводе 12, на трубопроводе подачи испаренного криогенного компонента 11 и на трубопроводе управляющего давления 13 расходным клапаном 2, при этом теплоизоляция блока подачи криогенного компонента 1 сопряжена с теплоизоляцией криогенного бака 7, причем экранно-вакуумная теплоизоляция криогенного бака 7 содержит m пакетов, а экранно-вакуумная теплоизоляция блока подачи криогенного компонента 1 содержит n пакетов, при этом n-й пакет контактирует торцом с наружной поверхностью m-го пакета, а наружная поверхность n-го пакета контактирует с торцевой поверхностью m-1 пакета, причем указанная последовательность повторяется необходимое число раз, при этом увеличивается термическое сопротивление в стыках пакетов, гермооболочка теплоизоляции блока подачи криогенного компонента 9 закреплена к гермооболочке теплоизоляции криогенного бака 15 через переходное кольцо 16, которое воспринимает распорную силу, возникающую от внутреннего давления в гермооболочке теплоизоляции криогенного бака 15.

При работе двигательной установки космического объекта возникает тепловой поток только от маршевого двигателя 6, который отсекается от криогенного бака 7 установкой пакетов экранно-вакуумной теплоизоляции 8 на блок подачи криогенного компонента 1.

Увеличением термического сопротивления в стыках пакетов 8 и 14 уменьшается передача тепла от пакетов 8 к пакетам 14, чем достигается еще большее снижение теплового потока, поступающего в криогенный бак 9.

В способе монтажа теплоизоляции агрегатов двигательной установки космического объекта, включающем нанесение экранно-вакуумной теплоизоляции на криогенный бак 7, после установки блока подачи криогенного компонента 1 на криогенный бак 7 наносят теплоизоляционный материал 10 на наружные поверхности насоса 4 бустерного турбонасосного агрегата 3, выравнивая его поверхность, затем гермооболочку теплоизоляции блока подачи криогенного компонента 9 закрепляют на расходном трубопроводе 12, на трубопроводе подачи испаренного криогенного компонента 11 и на трубопроводе управляющего давления 13 расходным клапаном 2, далее устанавливают пакеты экранно-вакуумной теплоизоляции блока подачи криогенного компонента поверх теплоизоляционного материала, затем гермооболочку теплоизоляции блока подачи криогенного компонента и гермооболочку теплоизоляции криогенного бака накладывают друг на друга и закрепляют их на наружной поверхности переходного кольца.

При монтаже теплоизоляции на блоке подачи криогенного компонента 1 используют, например, клей 88НП, в качестве теплоизоляционного материала 10 может быть использован материал ATM.

В гермооболочку теплоизоляции блока подачи криогенного компонента 9 могут быть вклеены, например, рукава 19, охватывающие трубопроводы 11, 12 и 13 и герметизирующиеся на них, например, с помощью колец 17 из пористой резины и шнура 18.

При использовании в качестве гермооболочки теплоизоляции блока подачи криогенного компонента 9 материала «Перплен» для более качественных клеевых соединений гермооболочки теплоизоляции блока подачи криогенного компонента 9 и гермооболочки теплоизоляции криогенного бака 15 с переходным кольцом 16 (например, металлическим) может быть применена ткань 500И как промежуточное звено.

Теплоизоляция агрегатов двигательной установки космического объекта с блоком подачи криогенного компонента 1, расположенным на криогенном баке 7 и состоящим из расходного клапана 2 и бустерного турбонасосного агрегата 3 с насосом 4 и турбиной 5, работающей от подачи испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя 20 двигательной установки, функционирует следующим образом.

В процессе полета космического объекта после запуска маршевого двигателя 6 работа блока подачи криогенного компонента 1 обеспечивается подачей испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя 20 двигательной установки, после чего отработанный газ поступает в расходный трубопровод 12. Испаренный криогенный компонент имеет температуру, близкую к нулю градусов по Цельсию, поэтому создаваемый турбиной такой тепловой поток не требует отсечки от криогенного бака 7, вследствие чего теплоизоляция полностью охватывает блок подачи криогенного компонента 1.

Теплоизоляция начинает работать после вскрытия гермооболочки криогенного бака 15 на активном участке полета ракеты-носителя и вакуумирования экранно-вакуумной теплоизоляции криогенного бака 7 и экранно-вакуумной теплоизоляции блока подачи криогенного компонента 1. Сопряжение каждого из пакетов экранно-вакуумной теплоизоляции блока подачи криогенного компонента 8 с соответствующими пакетами экранно-вакуумной теплоизоляции криогенного бака 14 снижает передачу тепла к криогенному баку 9 за счет увеличения термического сопротивления в стыках пакетов 8 и 14, а соединение гермооболочки теплоизоляции блока подачи криогенного компонента 9 с гермооболочкой теплоизоляции криогенного бака 15 с помощью переходного кольца 16 образует единое тепловое пространство вокруг криогенного бака 7, обеспечивая его стабильный тепловой режим.

Предложенная теплоизоляция агрегатов двигательной установки космического объекта с блоком подачи криогенного компонента 1, расположенным на криогенном баке 7 и состоящим из расходного клапана 2 и бустерного турбонасосного агрегата 3 с насосом 4 и турбиной 5, работающей от подачи испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя 20 двигательной установки, обеспечивает уменьшение потерь криогенного компонента за счет снижения уровня теплового потока, поступающего в криогенный бак 7 от маршевого двигателя 6 двигательной установки космического объекта.

Похожие патенты RU2600022C1

название год авторы номер документа
ТЕПЛОИЗОЛЯЦИЯ АГРЕГАТОВ ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО ОБЪЕКТА И СПОСОБ ЕЕ МОНТАЖА 2015
  • Туманин Евгений Николаевич
  • Рожков Михаил Викторович
RU2600032C1
ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО ОБЪЕКТА И ГИДРАВЛИЧЕСКИЙ КОНДЕНСАТОР ДЛЯ НЕЕ 2014
  • Смоленцев Александр Алексеевич
  • Тупицын Николай Николаевич
  • Туманин Евгений Николаевич
  • Белов Алексей Александрович
  • Рожков Михаил Викторович
RU2583994C2
ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА (ВАРИАНТЫ) И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2012
  • Белов Алексей Александрович
  • Катков Руслан Эдуардович
  • Тупицын Николай Николаевич
  • Федоров Валентин Иванович
  • Рожков Михаил Викторович
RU2497730C1
СИСТЕМА ЗАПУСКА КРИОГЕННОГО ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ КОСМИЧЕСКОГО ОБЪЕКТА 2011
  • Тупицын Николай Николаевич
  • Катков Руслан Эдуардович
  • Егоров Александр Михайлович
  • Киселева Ольга Валерьевна
  • Федоров Валентин Иванович
  • Туманин Евгений Николаевич
  • Рожков Михаил Викторович
RU2486113C1
ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2013
  • Белов Алексей Александрович
  • Тупицын Николай Николаевич
  • Федоров Валентин Иванович
  • Рожков Михаил Викторович
RU2539064C2
ОБЪЕДИНЕННАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА РАКЕТНОГО БЛОКА 2013
  • Морозов Владимир Иванович
  • Мальцев Михаил Владимирович
RU2554126C1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ НА КРИОГЕННОМ ТОПЛИВЕ 1996
  • Копылов В.В.
  • Сыровец М.Н.
RU2118684C1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2013
  • Горохов Виктор Дмитриевич
  • Гольба Анатолий Викторович
  • Кузнецов Александр Васильевич
  • Радько Дмитрий Владимирович
  • Туртушов Валерий Андреевич
RU2524483C1
УСТРОЙСТВО ДЛЯ ХРАНЕНИЯ И ПОДАЧИ КРИОГЕННОЙ ЖИДКОСТИ 2008
  • Туманин Евгений Николаевич
  • Рожков Михаил Викторович
RU2373119C1
ЖИДКОСТНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА 1998
  • Катков Р.Э.
  • Тупицын Н.Н.
RU2148181C1

Иллюстрации к изобретению RU 2 600 022 C1

Реферат патента 2016 года ТЕПЛОИЗОЛЯЦИЯ АГРЕГАТОВ ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО ОБЪЕКТА И СПОСОБ ЕЕ МОНТАЖА

Группа изобретений относится к теплоизоляции агрегатов двигательной установки космического объекта (ДУ КО). Теплоизоляция агрегатов ДУ КО содержит теплоизоляцию из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) криогенного бака и гермооболочку криогенного бака поверх них из мягкого неметаллического материала. На криогенном баке размещен блок подачи криогенного компонента - расходный клапан и бустерный турбонасосный агрегат с насосом и турбиной, работающей от подачи горячего газа из газовода за газогенератором маршевого двигателя ДУ. В теплоизоляцию агрегатов (ДУ КО) введена теплоизоляция блока подачи криогенного компонента. Теплоизоляция блока подачи криогенного компонента состоит из теплоизоляционного материала, размещенных поверх него пакетов ЭВТИ и гермооболочки блока подачи криогенного компонента поверх нее, расположенной с зазором к ЭВТИ. Техническим результатом группы изобретений является обеспечение уменьшения потерь криогенного компонента за счет снижения уровня теплового потока, поступающего в криогенный бак. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 600 022 C1

1. Теплоизоляция агрегатов двигательной установки космического объекта с блоком подачи криогенного компонента, расположенным на криогенном баке и состоящим из расходного клапана и бустерного турбонасосного агрегата с насосом и турбиной, работающей от подачи испаренного криогенного компонента в рубашке камеры сгорания маршевого двигателя двигательной установки, отличающаяся тем, что дополнительно введена теплоизоляция блока подачи криогенного компонента, состоящая из теплоизоляционного материала, размещенных поверх него пакетов экранно-вакуумной теплоизоляции и гермооболочки блока подачи криогенного компонента поверх нее, расположенной с зазором к экранно-вакуумной теплоизоляции блока подачи криогенного компонента, которая закреплена на расходном трубопроводе, на трубопроводе подачи испаренного криогенного компонента и на трубопроводе управляющего давления расходным клапаном, при этом теплоизоляция блока подачи криогенного компонента сопряжена с теплоизоляцией криогенного бака, причем экранно-вакуумная теплоизоляция криогенного бака содержит m пакетов, а экранно-вакуумная теплоизоляция блока подачи криогенного компонента содержит n пакетов, при этом n-й пакет контактирует торцом с наружной поверхностью m-го пакета, а наружная поверхность n-го пакета контактирует с торцевой поверхностью m-1 пакета, причем указанная последовательность повторяется необходимое число раз, при этом увеличивается термическое сопротивление в стыках пакетов, гермооболочка теплоизоляции блока подачи криогенного компонента закреплена к гермооболочке теплоизоляции криогенного бака через переходное кольцо, которое воспринимает распорную силу, возникающую от внутреннего давления в гермооболочке теплоизоляции криогенного бака.

2. Способ монтажа теплоизоляции агрегатов двигательной установки космического объекта, включающий нанесение экранно-вакуумной теплоизоляции на криогенный бак, отличающийся тем, что после установки блока подачи криогенного компонента на криогенный бак наносят теплоизоляционный материал на наружные поверхности насоса бустерного турбонасосного агрегата, выравнивая его поверхность, затем гермооболочку теплоизоляции блока подачи криогенного компонента закрепляют на расходном трубопроводе, на трубопроводе подачи испаренного криогенного компонента и на трубопроводе управляющего давления расходным клапаном, далее устанавливают пакеты экранно-вакуумной теплоизоляции блока подачи криогенного компонента поверх теплоизоляционного материала, затем гермооболочку теплоизоляции блока подачи криогенного компонента и гермооболочку теплоизоляции криогенного бака накладывают друг на друга и закрепляют их на наружной поверхности переходного кольца.

Документы, цитированные в отчете о поиске Патент 2016 года RU2600022C1

ЭКРАННО-ВАКУУМНАЯ ТЕПЛОИЗОЛЯЦИЯ КРИОГЕННОЙ ЕМКОСТИ РАКЕТНОГО КОСМИЧЕСКОГО РАЗГОННОГО БЛОКА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2008
  • Туманин Евгений Николаевич
  • Рожков Михаил Викторович
RU2384492C2
JP H06305498 A, 01.11.1994
US 5277959 A1, 11.01.1994
US 4986495 A1, 22.01.1991.

RU 2 600 022 C1

Авторы

Рожков Михаил Викторович

Туманин Евгений Николаевич

Даты

2016-10-20Публикация

2015-04-02Подача