Изобретение касается способа синтеза ацетальдегида путем каталитической изомеризации окиси этилена. Объектами изобретения являются как сам способ синтеза ацетальдегида, так и новый высокоселективный катализатор изомеризации окиси этилена в ацетальдегид (АА) и способ его приготовления.
Ацетальдегид - ценный многотоннажный промежуточный продукт промышленного органического синтеза. Он выступает основой производства уксусной кислоты, уксусного ангидрида, этилацетата, ацетатов целлюлозы, глиоксаля и т.д. Структура мирового потребления ацетальдегида динамична, но постоянно растет. Основной метод его получения в промышленности - жидкофазное окисление этилена кислородом в присутствие водных растворов хлоридов палладия и меди (процесс фирмы Wacker Chemie). Основными недостатками этого способа являются образование значительного количества побочных продуктов (уксусная кислота, кротоновый альдегид), токсичных хлорсодержащих кислых отходов, сложность выделения и очистки целевых продуктов, а также высокая коррозионная активность хлоридных растворов, что требует использования специальных материалов для реакторов.
О промышленном использовании газофазного окисления этилена в ацетальдегид не сообщается.
Другой вариант синтеза ацетальдегида каталитическим дегидрированием или окислительным дегидрированием этилового спирта приобретает все больший интерес, особенно в свете развития новых технологий получения спирта из биомассы.
Промышленную реализацию процесса затрудняет необходимость использования серебряных катализаторов, проявляющих высокую чувствительность к изменениям параметров процесса в ходе синтеза. У всех рассмотренных выше окислительных процессов есть серьезный недостаток - сложность обеспечения высокой селективности по ацетальдегиду.
Данное изобретение предлагает высокоселективный синтез ацетальдегида из окиси этилена (ОЭ) путем его газофазной изомеризации на цеолитных катализаторах определенной структуры. В настоящее время ОЭ является крупнотоннажным химическим продуктом, а его производство имеет высокий технологический уровень. Учитывая достигнутую к настоящему времени высокую селективность превращения этилена в ОЭ в промышленном каталитическом процессе, реакции дальнейшего превращения ОЭ в ценные химические продукты можно рассматривать как основу для потенциально эффективных технологий. В связи с этим, при условии создания высокоселективного катализатора, реакция изомеризации ОЭ в АА становится интересной для промышленного органического синтеза. Интерес к этой реакции также связан с тем, что ОЭ, в отличие от других алкиленоксидов, изомеризуется только в ацетальдегид, что в случае высокоселективного катализатора исключает затраты на выделение целевого продукта. Известно, что окись этилена изомеризуется в ацетальдегид при температурах 150-400°C в присутствии катализаторов кислотной природы, являющихся электрофильными агентами (Al2O3, ZnCl2, H2SO4, Н3РО4 и другие кислородсодержащие кислоты элементов 5 и 6-й групп Периодической системы) [Окись этилена./Под ред. проф. Зиманова, М., Химия, 1967]. Известные катализаторы не позволяют проводить эту реакцию с высокой селективностью, АА подвергается дальнейшим превращениям по реакциям альдольной конденсации с образованием непредельных спиртов, альдегидов и, в конечном итоге, смол и кокса.
Известно, что наряду с ОЭ изомеризации могут подвергаться и другие 1,2-алкиленоксиды, которые могут давать уже несколько изомеров. Например, пропилен оксид (РО) дает три изомерных соединения: аллиловый спирт, ацетон и пропионовый альдегид. Соотношение изомеров в продуктах реакции определяется типом катализатора и условиями реакции (время контакта, температура). Создание новых высокоселективных катализаторов является основным направлением для повышения эффективности синтеза определенного продукта из конкретного алкиленоксида.
Анализ патентной литературы по изомеризации алкиленоксидов показал, что интерес к селективному проведению этой реакции впервые проявила фирма Carbide and Carbon Chemicals Corporation (США) в 40-х годах прошлого века. В первом патенте US 2159507 (1939 г.) описаны способ и катализатор изомеризации 1,2-алкиленоксидов, имеющих от 2 до 4 атомов углерода в молекуле. Основное внимание было уделено изомеризации пропиленоксида, в результате которой получается аллиловый спирт и пропионовый альдегид. В патенте заявлено использование двойных сульфатных солей (например, алюмокалиевые квасцы, в которых калий может быть замещен на Na, NH4, Li, а алюминий на Cr, Fe или другие трехвалентные металлы). Двойные соли могут быть суспендированы в высококипящей жидкости или нанесены на инертный носитель (кизельгур, слюда, диоксид кремния и т.д.). Процесс проводили при температурах 150-450°C. Недостатком процесса является невозможность регенерации катализатора после его дезактивации. Для преодоления этого препятствия приходится вести процесс в присутствии катализатора окисления (ванадийсодержащего), который не оказывает дезактивирующего действия на катализатор изомеризации, но облегчает его регенерацию. Максимальный достигнутый суммарный выход продуктов изомеризации (пропионового альдегида и аллилового спирта) составлял 94.7% при температуре 290°C. К сожалению, не приводится данных по изомеризации ОЭ. Можно предположить, что показатели реакции будут менее оптимистичные из-за более низкой реакционной способности ОЭ по сравнению с пропиленоксидом.
В патенте US 976101 (1961 г.) предложен способ превращения широкого ряда эпоксидов (линейных, изо- и циклоолефинов) в соответствующие карбонильные соединения и, особенно, в альдегиды. Примеры касались изомеризации ОЭ в АА на катализаторе, состоящем из смеси сульфатов и галогенидов металлов 2, 3, 6, 7 и 8 групп Периодической таблицы. Механические смеси солей в свободном виде или нанесенные на диатомит оказались предпочтительней соответствующих двойных солей. При 250-350°C и временах контакта 0.7-1.5 с максимальный выход альдегида составлял 88-93.7% на пропущенный ОЭ.
Более поздние патенты посвящены, в основном, изомеризации пропиленоксида (РО) в аллиловый спирт. Учитывая коммерческую значимость спирта, этот процесс всесторонне исследован и запатентован в разных странах. Лучшим катализатором оказался фосфат лития как в чистом виде, так и модифицированный бором и щелочными металлами (US 2426264, B01J 27/18, С07С 33/03, 26.08.1047). Катализатор на основе фосфата лития демонстрирует невысокую производительность как для жидкофазного, так и для газофазного процессов.
Потребность в создании улучшенного высокоселективного, стабильного и производительного катализатора изомеризации алкиленоксидов остается и в настоящее время, особенно в связи с разработкой современных эффективных технологий синтеза алкиленоксидов. По нашему мнению, газофазный процесс более предпочтителен из-за его простоты, отсутствия необходимости обрабатывать и утилизировать масло, в котором суспендируется катализатор, и возможности регенерации катализатора в реакторе, где проходит процесс изомеризации.
Для проведения газофазных процессов часто используют термически устойчивые оксиды, металлосиликаты, металлофосфосфаты и цеолиты. Ранее цеолиты уже рассматривались как носители в катализаторах изомеризации алкиленоксидов. Например, в патенте US 5262371, B01J 27/18, 29/08, 06.05.1992, (фосфат лития на окиси алюминия, Na-MOR, Na-Y), цеолиты MOR и Y выступают в качестве нейтрального (подчеркнуто в тексте патента) неорганического носителя для активного компонента фосфата лития. Отмечается, что сами цеолиты в силу своей повышенной кислотности не могут вести реакцию с высокой селективностью.
Так, в патенте US 4980511, B01J 27/18, С07С 45/58, 25.12.1990 предлагается метод синтеза альдегидов и/или кетонов путем конверсии эпоксидов на цеолитах разных типов: MOR, FAU, L, ERI, СНА и пентасилы. Использование этих цеолитов в Н-форме не позволило авторам достигнуть высоких селективностей превращения линейных эпоксидов в карбонильные соединения (не более 80%), наряду с ними получается большое количество диеновых углеводородов, что приводит к быстрому закоксовыванию катализатора.
Для преодоления этого недостатка в патенте US 5312995, С07С 45/58, B01J 29/06, 17.05.1994, выбранным в качестве прототипа, газофазную реакцию изомеризации эпоксидов в терминальные альдегиды проводили на металлобменных цеолитах, обладающих более низкой кислотностью по сравнению с Н-формой исходных цеолитов. В описании указаны щелочно-металлобменные формы цеолитов типа Y, X, A, ZSM-5, MOR, предпочтительно цеолита Y. В качестве второго обменного металла используют металлы 2 и 3-й групп Периодической системы, a Na- и Н-формы указанных цеолитов не эффективны в качестве катализаторов изомеризации алкиленоксидов. Многостадийный синтез катализатора (получение металлобменной формы путем ионного обмена и ее последующая термообработка) удорожает процесс изомеризации алкиленоксида. В ходе реакции состояние обменного металла претерпевает изменения в результате закоксовывания. Авторы не приводят никаких данных о стабильности работы катализаторов, а возможность полной регенерации такого катализатора остается под вопросом.
Изобретение решает задачу создания эффективного катализатора для процесса получения ацетальдегида путем изомеризации окиси этилена
Технический результат - увеличение конверсии окиси этилена и селективности по ацетальдегиду, что обеспечивает высокий выход ацетальдегида.
Задача решается составом катализатора для получения ацетальдегида в процессе изомеризации окиси этилена, который в качестве активного компонента содержит цеолит структуры: МТТ, TON, или подвергнутый термопаровой обработке цеолит структуры, выбранной из следующего ряда, MFI, MEL, BEA, FER, MOR, FAU и имеющие состав: х Al2O3- y El2O - SiO2, где: x=0.1-5·10-2; y=2·10-3 , El - по крайней мере один из элементов 1 группы элементов Периодической системы, соединение которого используется для гидротермального синтеза цеолита (первый вариант).
По второму варианту катализатор для получения ацетальдегида в процессе изомеризации окиси этилена в качестве активного компонента содержит цеолит структуры: МТТ, TON, или подвергнутый термопаровой обработке цеолит структуры, выбранной из следующего ряда: MFI, MEL, BEA, FER, MOR, FAU и имеющий состав: х Al2O3- y El2O - SiO2, где x=0.1-5·10-2; y=2·10-3 , El - по крайней мере один из элементов 1 группы элементов Периодической системы, и содержит инертное связующее в массовых соотношениях цеолит/связующее от 0.1:99.9 до 99:1, предпочтительно от 1:9 до 9:1, в качестве которого выступает оксид алюминия с добавками, выбранными из ряда следующих оксидов: оксид кремния, оксид бора, оксид магния, оксид фосфора, оксид лантана, при массовом соотношении (оксид алюминия)/(любой другой из перечисленных оксидов), изменяющимся в пределах от 10:1 до 1:10.
Задача решается также способом приготовления катализатора для получения ацетальдегида в процессе изомеризации окиси этилена (второй вариант), который заключается в том, что цеолит структуры: МТТ, TON, или подвергнутый термопаровой обработке цеолит структуры, выбранной из следующего ряда: MFI, MEL, BEA, FER, MOR, FAU и имеющие состав: х Al2O3- y El2O - SiO2, где: x=0.1-5·10-2; y=2·10-3, Е1 - по крайней мере, один из элементов 1 группы элементов Периодической системы, смешивают с инертным связующим в массовых соотношениях цеолит/связующее от 0.1:99.9 до 99:1, затем подвергают процедурам формования и активации. В качестве связующего используют оксид алюминия с добавками, выбранными из ряда следующих оксидов: оксид кремния, оксид бора, оксид магния, оксид лантана, оксид фосфора при массовом соотношении (оксид алюминия)/(любой другой из перечисленных оксидов), изменяющимся в пределах от 10:1 до 1:10. Активацию катализатора проводят путем прокаливания формованного катализатора при температуре 400-600°C в среде сухого воздуха и/или водяного пара.
Задача решается также и способом получения ацетальдегида в процессе изомеризации окиси этилена путем пропускания парогазовой смеси окиси этилена с газом-разбавителем, в качестве которого может выступать азот и/или любой инертный газ и/или углекислый газ и/или воздух и/или пары воды, через слой катализатора, описанного выше. Изомеризацию ведут при температуре 150-450°C и времени контакта 0.1-5.0 с.
Мы предлагаем осуществлять синтез ацетальдегида путем изомеризации ОЭ в газофазном режиме на катализаторе, в качестве активного компонента которого выступает цеолит структуры, выбранной из следующего ряда: МТТ, TON, MFI, MEL, BEA, FER, MOR, FAU. Данные цеолиты представляют собой активную часть катализатора, которая может быть разбавлена инертным связующим для технологических целей (как правило, это уменьшение сопротивления слоя катализатора, улучшения диффузионных характеристик, уменьшения уноса цеолита и оптимизация теплового режима работы реактора). За счет присутствия цеолита катализатор обладает кислотно-основными свойствами, которые могут быть оптимизированы для снижения вероятности побочных процессов конденсации ацетальдегида, т.е. осуществления с высокой селективностью процессов изомеризации именно ОЭ, конечным продуктом которой является ацетальдегид. Предлагаются два подхода по оптимизации катализатора. Первый - использование для синтеза катализатора цеолитов структуры МТТ и TON, имеющих одномерную систему каналов диаметром 5-6 А и содержащих кислотные центры средней силы. Для структур MFI, MEL, BEA, FER, MOR, FAU оптимизация кислотных свойств проводится путем термопаровой обработки при температуре 500-650°C в токе инертного газа или воздуха, содержащего от 5 до 50 мол. % водяного пара. Термообработка проводится перед проведением реакции в том же проточном реакторе. Термообработка возможна как гранулированного со связующим цеолита, так и цеолита без связующего. Использование цеолитов определенных структур, обладающих кислотными центрами средней силы, или снижение концентрации кислотных центров в цеолитах с сильными кислотными центрами, позволяет получить высокие показатели активности и селективности процесса без специального модифицирования цеолита металлами 1-3 групп. Это делает технологические и эксплуатационные свойства катализатора более предсказуемыми, вероятность побочных процессов уменьшается, а регенерация катализатора не требует особых предосторожностей, как в случае модифицированных металлами цеолитов. Для синтеза катализатора цеолит может быть любым из известных способов сформован в гранулы с оксидом алюминия в качестве связующего как без, так и с добавками, выбранными из ряда следующих оксидов: оксид кремния, оксид бора, оксид магния, оксид лантана, оксид фосфора. Роль добавок заключается в модифицировании поверхности связующего с целью уменьшения вклада побочных реакций, облегчения десорбции полученных карбонильных соединений и повышении селективности процесса изомеризации. В результате изомеризации могут быть получены ацетальдегид и кротоновый альдегид (еще один ценный продукт) в виде либо смеси этих альдегидов, либо в качестве индивидуальных продуктов. Соотношение между альдегидами определяется составом применяемого катализатора.
Таким образом, мы предлагаем использовать цеолиты как активный компонент высокоселективного катализатора синтеза ацетальдегида путем газофазной изомеризации ОЭ. Цеолиты структур МТТ и TON предлагается использовать без обработки водяным паром, а цеолиты структур из ряда MFI, MEL, BEA, FER, MOR, FAU - после термопаровой обработки. В качестве катализатора могут выступать как чистые цеолиты, так и сформованные с инертным связующим, которое может в качестве добавок содержать другие оксиды, а именно: оксид кремния, оксид бора, оксид магния, оксид лантана, оксид фосфора.
Сущность изобретения иллюстрируется следующими примерами и таблицей.
Пример 1.
Газообразную смесь окиси этилена и гелия (10 мол % окиси этилена) пропускают со скоростью 50 мл в минуту через стеклянный реактор диаметром 0.5 см, в который помещено 0.2 г фракции катализатора, представляющего собой цеолит структуры МТТ, имеющий состав 1·10-2Al2O3-2·10-3Na2O-SiO2. В реакторе поддерживают температуру 450°С. Время контакта составляет 0.5 с. Конверсию окиси этилена рассчитывают по уравнению 1, селективность по ацетальдегиду, кротоновому альдегиду и диоксану - по уравнению 2. Концентрации окиси этилена и продуктов реакции в газовой смеси оценивают по данным хроматографического анализа. Видно, что в этих условиях конверсия окиси этилена составляет 100%, селективность по ацетальдегиду равна 90%, кротоновому - 2%, диоксану - 0.2%.
Уравнение 1.
Уравнение 2.
где NAA (КА, ДО) - поток ацетальдегида, или кротонового альдегида или диоксана, моль/мин;
NОЭ 0 - поток окиси этилена входящий, моль/мин;
NОЭ - поток окиси этилена выходящий, моль/мин.
Результаты по всем примерам приведены в таблице.
Примеры 2-4.
Процесс ведут аналогично примеру 1 с тем отличием, что температуру в реакторе устанавливают 400°C (пример 2), 350°C (пример 3) и 300°C (пример 4). Из таблицы видно, что при уменьшении температуры реакции от 450 до 300°C конверсия окиси этилена уменьшается незначительно (98% для примера 4), селективность по ацетальдегиду проходит через максимум, кротонового альдегида снижается от 2 до 0.5%, а диоксана увеличивается от 0.2 до 6%.
Пример 5.
Процесс ведут аналогично примеру 1 с тем отличием, что в реактор загружают 2 г цеолита (время контакта составляет 5 с), а температуру в реакторе поддерживают 150°С.
Примеры 6-8.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит той же структуры МТТ состава 1,6·10-2Al2O3-2·10-3Na2O-SiO2, а температуру в реакторе устанавливают 350°C (пример 6), 300°C (пример 7) 250°C (пример 8).
Примеры 9-10.
Процесс ведут аналогично примеру 1 с тем отличием, что в реактор загружают 1 г цеолита структуры TON состава 1·10-2Al2O3-2·10-3Na2O-SiO2, время контакта составляет 2,5 с, а температуру в реакторе устанавливают 300°C (пример 9) и 200°C (пример 10).
Пример 11.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 4,2·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 650°C, а температуру в реакторе устанавливают 300°C.
Пример 12.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 2.0·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 650°C, а температуру в реакторе устанавливают 350°C.
Пример 13.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 1.25·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 650°C, а температуру в реакторе устанавливают 350°C.
Пример 14.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 650°C, а температуру в реакторе устанавливают 350°C.
Пример 15.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 2.0·10-3Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 650°C, а температуру в реакторе устанавливают 400°C.
Пример 16.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MEL состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 650°C, а температуру в реакторе устанавливают 350°C.
Пример 17.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры ВЕА состава 1.25·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 500°C, а температуру в реакторе устанавливают 300°C.
Пример 18.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры FER состава 1.6·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 500°C, а температуру в реакторе устанавливают 300°C.
Пример 19.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MTW состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, а температуру в реакторе устанавливают 350°C.
Пример 20.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры FAU состава 0.1·10-2Al2O3-2·10-3NaiO-SiO2, подвергнутый термопаровой обработке при 400°C, а температуру в реакторе устанавливают 300°C.
Пример 21.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры FAU состава 2.5·10-2Al2O3-2·10-3Na2O-SiO2, подвергнутый термопаровой обработке при 400°C а температуру в реакторе устанавливают 350°C.
Пример 22.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MOR состава 5.0·10-2Al2O3-2·10-3Na2O-SiO2, а температуру в реакторе устанавливают 350°C.
Пример 23.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры МТТ состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой оксид алюминия, содержание которого составляет 30 мас. %, а температуру в реакторе устанавливают 350°C. Перед проведением реакции катализатор подвергают активации в сухом воздухе при температуре 500°C в течение 1 ч.
Пример 24.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры МТТ состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов кремния и алюминия в соотношениях Al2O3-0.1SiO2, содержание которого составляет 30 мас. %, а температуру в реакторе устанавливают 400°C. Перед проведением реакции катализатор подвергают активации в сухом воздухе при температуре 500°C в течение 1 ч.
Пример 25.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры МТТ состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов кремния, магния и алюминия в соотношениях 0.1 Al2O3-SiO2-MgO, содержание которого составляет 50 мас. %, а температуру в реакторе устанавливают 350°C. Перед проведением реакции катализатор подвергают активации в сухом воздухе при температуре 500°C в течение 1 ч.
Пример 26.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры МТТ состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов кремния, магния и алюминия в соотношениях 0.1Al2O3-SiO2-MgO, содержание которого составляет 80 мас. %, а температуру в реакторе устанавливают 400°C. Перед проведением реакции катализатор подвергают активации в сухом воздухе при температуре 450°C в течение 1 ч.
Пример 27.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры МТТ состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов кремния, магния и алюминия в соотношениях 0.1Al2O3-SiO2-MgO, содержание которого составляет 99 мас. %, а температуру в реакторе устанавливают 400°C. Перед проведением реакции катализатор подвергают активации в сухом воздухе при температуре 450°C в течение 1 ч.
Пример 28.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры МТТ состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов кремния, магния и алюминия в соотношениях 0.1Al2O3-SiO2-MgO, содержание которого составляет 99.9 мас. %, а температуру в реакторе устанавливают 400°C. Перед проведением реакции катализатор подвергают активации в сухом воздухе при температуре 450°C в течение 1 ч.
Пример 29.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 4.2·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой оксид алюминия, содержание которого составляет 40 мас. %, а температуру в реакторе устанавливают 350°C. Перед началом реакции катализатор подвергают термопаровой обработке (10 мол. % воды в гелии) при 600°C в течение 1 ч.
Пример 30.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 4.2·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов алюминия и бора в соотношениях Al2O3-0.1B2O3, содержание которого составляет 40 мас. %, а температуру в реакторе устанавливают 350°C. Перед началом реакции катализатор подвергают термопаровой обработке (10 мол. % воды в гелии) при 600°C в течение 1 ч.
Пример 31.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MFI состава 4.2·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов алюминия и фосфора в соотношениях Al2O3-0.1P2O5, содержание которого составляет 40 мас. %, а температуру в реакторе устанавливают 400°C. Перед началом реакции катализатор подвергают термопаровой обработке (10 мол. % воды в гелии) при 600°C в течение 1 ч.
Пример 32.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры MTW состава 1.0·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов алюминия, магния и лантана в соотношениях Al2O3-0.1MgO-0.1La2O3, содержание которого составляет 30 мас. %, а температуру в реакторе устанавливают 350°C.
Пример 33.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры FAU состава 2.5·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой оксид алюминия, содержание которого составляет 50 мас. %, а температуру в реакторе устанавливают 350°C. Перед началом реакции катализатор подвергают термопаровой обработке (10 мол. % воды в гелии) при 500°C в течение 1 ч.
Пример 34.
Процесс ведут аналогично примеру 1 с тем отличием, что в качестве катализатора используют цеолит структуры FAU состава 2.5·10-2Al2O3-2·10-3Na2O-SiO2, сформованный со связующим, представляющим собой смесь оксидов алюминия и лантана в соотношении Al2O3-0.1La2O3, содержание которого составляет 50 мас. %, а температуру в реакторе устанавливают 350°C.
Пример 35.
Газообразная смесь окиси этилена и гелия пропускается со скоростью 60 мл/мин через стеклянный реактор диаметром 0.5 см, в который помещено 4.0 мл фракции диаметром 0.25-0.5 мм катализатора, представляющего собой силикагель, имеющий состав 2·10-3Na2O-SiO2. В реакторе устанавливают температуру 400°C. Время контакта составляет 4.0 с.
Пример 36.
Газообразная смесь окиси этилена и гелия пропускается со скоростью 30 мл/мин через стеклянный реактор диаметром 0.5 см, без катализатора. В реакторе поддерживают температуру 400°C.
Результаты каталитических испытаний по примерам 1-36 приведены в таблице.
Таким образов, как видно из примеров и таблицы, конверсия ОЭ на цеолитных катализаторах составляет от 30 до 100% в условиях заявленных температур, селективность превращения ОЭ в АА составляет от 55 до 95% в условиях заявленных температур.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПИРИДИНОВ | 2017 |
|
RU2688162C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ РАЗВЕТВЛЕННЫХ КЕТОНОВ | 2015 |
|
RU2605427C1 |
Способ повышения стабильности кислородсодержащих компонентов моторного топлива и регулирования содержания в них кислорода | 2015 |
|
RU2607902C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИРИДИНА И МЕТИЛПИРИДИНОВ | 2013 |
|
RU2555843C1 |
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДОВ, КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ С МИКРО-МЕЗОПОРИСТОЙ СТРУКТУРОЙ И СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА | 2005 |
|
RU2288034C1 |
Катализатор изодепарафинизации углеводородного сырья С10+ для получения низкозастывающих масел и дизельных топлив и способ получения низкозастывающих масел и топлив с его использованием | 2016 |
|
RU2627770C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИРИДИНА И МЕТИЛПИРИДИНОВ | 2013 |
|
RU2555844C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИРИДИНА И МЕТИЛПИРИДИНОВ | 2015 |
|
RU2599573C2 |
КАТАЛИЗАТОР ДЛЯ КОНВЕРСИИ НИЗКОМОЛЕКУЛЯРНЫХ СПИРТОВ В ВЫСОКООКТАНОВЫЙ БЕНЗИН И ПРОПАН-БУТАНОВУЮ ФРАКЦИЮ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ КОНВЕРСИИ НИЗКОМОЛЕКУЛЯРНЫХ СПИРТОВ В ВЫСОКООКТАНОВЫЙ БЕНЗИН И ПРОПАН-БУТАНОВУЮ ФРАКЦИЮ | 2007 |
|
RU2330719C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИРИДИНОВ | 2017 |
|
RU2688224C1 |
Изобретение относится к катализаторам (вариантам) для получения ацетальдегида в процессе изомеризации окиси этилена, а также к способу приготовления заявленных катализаторов. При этом в качестве активного компонента катализатор содержит цеолит структуры: МТТ, TON, имеющие состав: x Al2O3 - y El2O - SiO2, где x=0.1-5·10-2; y=2·10-3, El - по крайней мере один из элементов 1 группы элементов Периодической системы, соединение которого используется для гидротермального синтеза цеолита, или подвергнутый термопаровой обработке цеолит того же состава и структуры, выбранной из следующего ряда: MFI, MEL, BEA, FER, MOR, FAU. Изобретение также относится к способу получения ацетальдегида в процессе изомеризации окиси этилена путем пропускания парогазовой смеси окиси этилена с газом-разбавителем, в качестве которого может выступать азот и/или любой инертный газ, и/или углекислый газ, и/или воздух, и/или пары воды, через слой катализатора, в присутствии заявленных катализаторов (варианты). Технический результат заключается в увеличении конверсии окиси этилена и селективности по ацетальдегиду, что обеспечивает высокий выход ацетальдегида. 4 н. и 5 з.п. ф-лы, 1 табл., 36 пр.
1. Катализатор для получения ацетальдегида в процессе изомеризации окиси этилена, отличающийся тем, что в качестве активного компонента он содержит цеолит структуры: МТТ, TON, имеющие состав: x Al2O3 - y El2O - SiO2, где x=0.1-5·10-2; y=2·10-3, El - по крайней мере один из элементов 1 группы элементов Периодической системы, соединение которого используется для гидротермального синтеза цеолита, или подвергнутый термопаровой обработке цеолит того же состава и структуры, выбранной из следующего ряда: MFI, MEL, BEA, FER, MOR, FAU.
2. Катализатор для получения ацетальдегида в процессе изомеризации окиси этилена, отличающийся тем, что в качестве активного компонента он содержит цеолит структуры: МТТ, TON, имеющие состав: x Al2O3 - y El2O - SiO2, где x=0.1-5·10-2; y=2·10-3, El - по крайней мере один из элементов 1 группы элементов Периодической системы, или подвергнутый термопаровой обработке цеолит того же состава и структуры, выбранной из следующего ряда: MFI, MEL, BEA, FER, MOR, FAU, и содержит инертное связующее в массовых соотношениях цеолит / связующее от 0.1:99.9 до 99:1.
3. Катализатор по п. 2, отличающийся тем, что в качестве связующего он содержит оксид алюминия с добавками, выбранными из ряда следующих оксидов: оксид кремния, оксид бора, оксид магния, оксид фосфора, оксид лантана, при массовом соотношении оксид алюминия / любой другой из перечисленных оксидов, изменяющимся в пределах от 10:1 до 1:10.
4. Способ приготовления катализатора для получения ацетальдегида в процессе изомеризации окиси этилена, отличающийся тем, что цеолит структуры: МТТ, TON, имеющие состав: x Al2O3 - y El2O - SiO2, где x=0.1-5·10-2; y=2·10-3, El - по крайней мере, один из элементов 1 группы элементов Периодической системы, или подвергнутый термопаровой обработке цеолит того же состава и структуры, выбранной из следующего ряда: MFI, MEL, BEA, FER, MOR, FAU, и смешивают с инертным связующим в массовых соотношениях цеолит / связующее от 0.1:99.9 до 99:1, затем подвергают процедурам формования и активации.
5. Способ по п. 4, отличающийся тем, что в качестве связующего используют оксид алюминия с добавками, выбранными из ряда следующих оксидов: оксид кремния, оксид бора, оксид магния, оксид лантана, оксид фосфора при массовом соотношении оксид алюминия / любой другой из перечисленных оксидов, изменяющимся в пределах от 10:1 до 1:10.
6. Способ по п. 4, отличающийся тем, что активацию катализатора проводят путем прокаливания формованного катализатора при температуре 400-600°C в среде сухого воздуха и/или водяного пара.
7. Способ получения ацетальдегида в процессе изомеризации окиси этилена путем пропускания парогазовой смеси окиси этилена с газом-разбавителем, в качестве которого может выступать азот и/или любой инертный газ, и/или углекислый газ, и/или воздух, и/или пары воды, через слой катализатора, отличающийся тем, что используют катализатор п. 1 или 2 и 3.
8. Способ по п. 7, отличающийся тем, что изомеризацию ведут при температуре 150-450°С.
9. Способ по п. 7, отличающийся тем, что изомеризацию ведут при времени контакта 0.1-5.0 с.
US 5312995 A, 17.05.1994 | |||
US 4980511 A, 25.12.1990 | |||
US 5262371 A, 16.11.1993 | |||
US 4871701 A, 03.10.1989 | |||
СПОСОБ ИЗОМЕРИЗАЦИИ СЫРЬЯ, СОДЕРЖАЩЕГО ПАРАФИНЫ С ЧИСЛОМ АТОМОВ УГЛЕРОДА ОТ 5 ДО 7, И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2006 |
|
RU2382023C2 |
Авторы
Даты
2016-10-20—Публикация
2015-09-02—Подача