СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТИМУЛЯТОРА РОСТА И РАЗВИТИЯ РАСТЕНИЙ ИЗ ГУМУСОСОДЕРЖАЩИХ ВЕЩЕСТВ Российский патент 2016 года по МПК C05F3/00 C05F11/00 

Описание патента на изобретение RU2600748C1

Изобретение относится к сельскому хозяйству, а именно к получению биологически активных препаратов для использования в земледелии.

Известно, что вермикомпост (биогумус) является возобновляемым органо-минеральным экологически безопасным удобрением, получаемым из органосодержащих отходов с помощью дождевых (компостных) червей. Он содержит в себе кроме гуминовых веществ очень широкий набор биологически активных веществ и богатую по видовому составу микрофлору полезных почвенных сапрофитных микроорганизмов-антагонистов патогенов различной природы, в частности фитопатогенов.

Перспективен жидкий препарат из вермикомпоста, способ получения которого описан в публикации (RU 93029159 A, Титов И.Н. и др., ООО "Биоком", 27.02.1997). Вермикомпост замачивают в воде, полученную бактериальную суспензию сливают, проводят щелочную экстракцию оставшегося осадка 0,1-0,2 н. раствором щелочи при температуре 20-40°C, а затем, после нейтрализации, к вытяжке добавляют бактериальную суспензию. Как показано дальнейшими исследованиями, жидкий препарат за счет содержания живых почвенных микроорганизмов и продуктов их метаболизма, а также ряда других биологически активных веществ стимулирует корнеобразование, рост и развитие растений, повышает всхожесть семян и урожайность культур, снижает количество нитратов в сельхозпродукции, устраняет семенные инфекции (Титов И.Н., Усоев В.М. Гуминовые препараты на основе продуктов аэробной биоконверсии органических отходов для органического земледелия. Мат. Всеросс. научно-практической конференции «Инновационные подходы к естественнонаучным исследованиям и образованию». Казань, 12-13 марта 2009 г. Казань: ТГГП Университета, 2009. С. 282-286); Arancon N. and C.A. Edwards. In: Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management, ed. C.A. Edwards, N.Q. Arancon and R. Sherman, CRS Press, Taylor and Francis Group. 2011, pp. 129-152; Salter С.E. and C.A. Edwards, там же pp. 153-164).

Известен способ получения комплексного удобрения (RU 2107054 C1, Каржеманов, 20.03.1998). Включает разбавление вермикомпоста водой, микробиологическую ферментацию полученной суспензии при перемешивании и последующее отделение жидкой фракции методом фильтрации при 25-30°C и при непрерывном обогащении водной суспензии кислородом в течение 150-170 часов. На конечной стадии получения целевого продукта отфильтрованную жидкую фракцию обезвоживают при пониженном давлении и температуре 30-35°C. Конечный продукт обладает улучшенными эксплуатационными характеристиками и содержит в себе более высокие концентрации регуляторов роста растений: ауксинов, цитокининов и гибберелинов - физиологически активных метаболитов, продуцируемых аэробными почвенными микроорганизмами. Недостаток - низкое извлечение водорастворимых соединений (не более 3-5%) из вермикомпоста в водную фазу; большая часть гуминовых веществ остается в осадке и теряется при отстаивании и фильтрации водной суспензии.

Известен способ извлечения жидких биологически активных веществ из биогумуса путем экстрагирования с наложением интенсифицирующего фактора - турбулизации потоков воды с последующей ферментацией (RU 2231513 C1, ООО "СЭЗ", 27.06.2004). Размер частиц биогумуса составляет 0,1-10 мм, а его растворение водой осуществляется в соотношении 1:10. Экстрагирование проводят в течение 1-2 часов при температуре 23-26°C с последующей естественной биологической ферментацией раствора в течение 3-5 суток. Однако и в этом случае недостаток - длительность процесса и низкий уровень извлечения активных веществ из твердой фазы в раствор. Описано использование ультразвука при экстрагировании жидких веществ из аммиачного раствора биогумуса (UA 37422 (U), Веремеенко и др., 25.11.2008), однако этот процесс достаточно энергозатратен, т.к. требует предварительной диспергации биогумуса перед проведением ультразвукового экстрагирования.

Одним из перспективных средств интенсификации экстракции при получении жидких препаратов биологически ценных веществ и тонкодисперсных дисперсий является многофакторное воздействие, реализуемое в роторном пульсационном аппарате (RU 105905 U1, Ириков, Промтов, 27.06.2011). Одновременное механическое, акустическое и тепловое воздействие способствует увеличению поверхности фазового контакта, росту относительных скоростей движения фаз и уменьшению величины диффузионного слоя. Указанное интенсифицирует процесс массопереноса полезных веществ из твердых частиц в жидкость за счет большой удельной диссипации энергии в малом объеме за малый интервал времени. Режимы воздействия описаны в работе «Установка на базе роторного импульсного аппарата для получения водной дисперсии биогумуса» (2008), http://www.tstu.ru/structure/inst/doc/mo/eito26.doc.

Наиболее близким по назначению является способ получения жидкого препарата из гумусосодержащих веществ путем импульсного многофакторного воздействия на твердую фракцию вермикомпоста (биогумуса) в установке на базе роторного импульсного аппарата (RU 2012155656 A, Титов, Ириков, 27.06.2014, - прототип). Вермикомпост (биогумус) предварительно смешивается с водой в соотношении 70% воды и 30% вермикомпоста без добавления каких-либо реагентов, прогоняется через роторный импульсный аппарат, в результате интенсивного диспергирования и гомогенизации вермикомпоста в воде при такой обработке образуется однородная жидкая смесь с мелкодисперсными частицами вермикомпоста в воде, обогащенная питательными элементами NPK, гуминовыми веществами и полезной почвенной микрофлорой.

Исследования, проведенные заявителем, показали, что эффективность жидкого препарата из гумусосодержащих веществ может быть повышена за счет структурирования самой дисперсии и целенаправленного введения нового компонента - отходов винодельческой промышленности - виноградных выжимок. Помимо того что эти выжимки сами являются источником биологически активных веществ, не присущих вермикомпосту, в данном способе они помогают образованию в дисперсиях принципиально новых молекулярных ансамблей, дополнительно выполняют роль абразивного компонента в процессе кавитационной обработки вермикомпоста роторным импульсным аппаратом. Это свойство впервые установлено заявителем и неизвестно из уровня техники.

Виноградные выжимки являются ценным источником комплекса витаминов, макро- и микроэлементов, белков, жирных кислот, биологически активных веществ, например флавоноидов, антоцианов (см., например, Кондратьев Д.В., Щеглов Н.Г. Оптимизация процессов извлечения биологически активных веществ из виноградных выжимок // Изв. вузов, пищ. технол. 2008. №1. С. 45-46; Гиашвили М.Д., Танащук Т.Н. Перспективы использования виноградной выжимки как источника биологически активных добавок // Виноделие и виноградарство. 2005. №6. С. 37-38. Температурный режим обработки должен быть щадящим во избежание потери биологически активных веществ (Khanal Ramesh C., et al. Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins // Food Res. Int. 2010. V. 43. N5. Pp. 1464-1469).

Однако выделение активных веществ из такого вида сырья и практическое использование осложнено прочной волокнистой структурой семенной оболочки виноградных косточек, составляющих 60-62% от массы сухих выжимок. Описан способ переработки виноградных выжимок (SU 1449011 (A3), ГЕРНОТ ГРЭФЭ, 30.12.1988), согласно которому виноградные выжимки подвергают аэробному разложению, разделяют продукты разложения и косточки просеиванием, отделенные косточки размалывают и подвергают аэробному разложению. Разложенные косточки фракционируют и используют как сухое удобрение с размером частиц до 1,0 мм и как адсорбент с размером более 1,0 мм. Указывается, что последнюю можно дополнительно выщелачивать водой, а отделенная при выщелачивании жидкость также представляет собой удобрение. Однако такое жидкое удобрение не является целевым продуктом и концентрация в нем активных веществ мала.

Способ по изобретению направлен на комплексную переработку вермикомпоста и виноградных выжимок с количественным выходом жидкой дисперсии препарата стимулятора роста и развития растений с использованием роторно-пульсационного аппарата в режиме саморазогрева пульпы и пастеризации продукта, позволяющей увеличить срок его хранения.

Патентуемый способ получения жидкого препарата для стимуляции роста и развития растений включает предварительный помол, растворение в воде гумусосодержащего сырья и дезинтеграцию в роторно-пульсационном аппарате.

Отличия состоят в том, что в качестве сырья используют вермикомпост и виноградные выжимки, причем сначала исходный вермикомпост с размером частиц, не превышающим 3 мм, и влажностью 55-57% обрабатывают в роторно-пульсационном аппарате водой, забуференной аммиаком или гидроксидом калия до pH в диапазоне 9,5-10,9, при массовом соотношении вермикомпост:вода, равном 1:3-4, и температуре 55-60°C, в течение 2-3 минут.

Затем к полученной пульпе в роторно-пульсационный аппарат загружают виноградные выжимки с размером частиц, не превышающим 20 мм, влажностью 6-9%, при массовом соотношении виноградные выжимки:вермикомпост, равном 1:6-9, и проводят совместную дезинтеграцию при температуре 55-60°C до достижения частицами твердой фазы размера 5-10 мкм и pH в диапазоне 7,2-7,5, после чего полученную дисперсию охлаждают и в качестве целевого продукта разливают в тару. Совместную дезинтеграцию проводят в течение 2-5 минут.

Технический результат - получение более однородной дисперсии в режиме саморазогрева пульпы с одновременной ее пастеризацией, а также расширение спектра биогенных компонентов, входящих в состав целевого продукта.

Заявляемый способ может быть реализован с использованием известного технологического оборудования кавитационной обработки, роторного импульсного (или т.н. роторно-пульсационного) аппарата, в частности любого промышленного диспергатора циркуляционного типа, например РПА «Дельта-ротор» с приводом (Установка РПА) 1111.731.00.100, ТУ513∗-002-43794424-2008, производство ООО НПП «Авиатехника», г. Казань). Рабочая частота вращения ротора составляет 3000 об/мин; максимальная производительность (по воде) - 20 м3/ч.

Дезинтеграцию вермикомпоста и виноградных выжимок с помощью роторно-пульсационного аппарата проводят в две стадии. На первой стадии исходный вермикомпост с размером частиц до 2-3 мм, влажностью 55-57% обрабатывают водой, забуференной аммиаком или гидроксидом калия, при массовом соотношении вермикомпост:вода, равном 1:3-4, и температуре 55-60°C, в течение 2-3 минут. На второй стадии дезинтеграции в пульпу, полученную на первой стадии, не выгружая ее из роторно-пульсационного аппарата и не изменяя режим работы аппарата, загружают виноградные выжимки с размером частиц до 1-2 см, влажностью 6-9% при температуре 55-60°C в течение 2-5 минут при массовом соотношении виноградные выжимки:вермикомпост, равном 1:6-9, до достижения частицами твердой фазы размера 5-10 мкм с последующим охлаждением пульпы до 30°C.

На организацию принципиально новых молекулярных ансамблей дисперсий биологически активного препарата на основе виноградных выжимок и вермикомпоста указывают данные измерений динамического светорассеяния водных растворов системы. Измерения проводились с помощью прибора Zetasizer Nano ZS Zen3600 «Malvern». Источником света являлся гелий - неоновый лазер, работающий на частоте 633 нм с высоким (до 0,1 мкс) временным разрешением, с последующим расчетом зависимости средних коэффициентов корреляции между результатами измерения от временного промежутка между этими измерениями. Эта зависимость позволяет определить средние скорости диффузии частиц в образце и, соответственно, гидродинамические диаметры частиц.

Результаты измерений представлены в виде зависимости доли, приходящейся на частицы данного размера, от общего объема всех дисперсных частиц, где на:

фиг. 1 показано распределение частиц по размерам для водной дисперсии вермикомпоста, полученной с помощью РПА;

фиг. 2 - то же, что на фиг. 1, но для водной дисперсии вермикомпост - виноградные выжимки.

Видно, что для дисперсной системы вермикомпоста в водной среде (фиг. 1) при 25°C имеет место тримодальный характер объемного распределения частиц по размерам с максимумами пиков около 150, 940 и 5600 нм (вклады пиков по интенсивности светорассеяния 3,3, 63,5 и 33,2%, соответственно). Для дисперсной системы «вермикомпост - виноградные выжимки» (фиг. 2) характер объемного распределения частиц по размерам существенно меняется. Пик основной моды - вклад 99,5% наблюдается в области около 4500 нм, вклад минорного сигнала с максимумом пика 840 нм составляет лишь 0,5%. Результаты измерений подтверждают факт организации принципиально новых молекулярных ансамблей в полученной дисперсии.

Ниже приведены примеры осуществления способа.

Пример 1. В роторно-пульсационный аппарат загружали 9 л воды, добавляли 90 мл водного аммиака (ОСЧ 25-5, ГОСТ 24147-80) доводя pH раствора до 9,5. Включали двигатель роторно-пульсационного аппарата, задавали число оборотов 3000 мин-1 и при температуре 55-60°C в течение 2-3 минут проводили немедленную загрузку в аппарат исходного вермикомпоста в количестве 3 кг. Скорость загрузки 1,5-1,0 кг/мин. По окончании загрузки вермикомпоста в аппарат, не снижая числа оборотов двигателя, немедленно загружали виноградные выжимки в количестве 0,5 кг. Скорость загрузки 0,25-0,1 кг/мин. После окончания процесса пульпу, охлажденную до 30°C, количественно сливали, регистрировали активную кислотность (pH=7,2) и осуществляли контроль дисперсности методом динамического светорассеяния (5-10 мкм-1).

Пример 2. В роторно-пульсационный аппарат загружали 9 л воды, добавляли 12 г гидроксида калия (ГОСТ 9285-78), доводя pH раствора до 10,9. Включали двигатель роторно-пульсационного аппарата, задавали число оборотов 3000 мин-1 и при температуре 55-60°C проводили немедленную загрузку в аппарат исходного вермикомпоста в количестве 2,25 кг. Скорость загрузки 0,8-1,2 кг/мин. По окончании загрузки вермикомпоста в аппарат, не снижая числа оборотов, немедленно загружали виноградные выжимки в количестве 0,25 кг. Скорость загрузки 0,1-0,25 кг/мин. После окончания процесса пульпу, охлажденную до 30°C, количественно сливали, регистрировали активную кислотность (pH=7,5) и осуществляли контроль дисперсности с помощью метода динамического светорассеяния (5-10 мкм-1).

Сопоставительный анализ с прототипом показывает, что добавление виноградных выжимок на стадии интенсивного диспергирования и гомогенизации твердой фракции вермикомпоста приводит к более тонкому измельчению твердой фракции вермикомпоста. Таким образом, возможно получение более однородной, тонкодисперсной суспензии, содержащей в себе молекулярные ансамбли и адсорбционные комплексы.

Предлагаемый способ получения жидкого стимулятора роста и развития растений является простым в отношении аппаратурного оформления и может быть реализован в промышленных условиях.

Предложенный способ позволяет получать дисперсию вермикомпоста высокого качества за счет содержащегося в выжимках твердого виноградного семени, играющего в процессе роль микроизмельчителя, сопровождается одновременным высвобождением виноградного масла из семени, что приводит к снижению поверхностного натяжения дисперсионной среды и более полному их экстрагированию. Все это существенно упрощает технологию процесса, делает его экономически более выгодным, так как процесс в роторно-пульсационном аппарате осуществляется в условиях саморазогрева пульпы и не требует подвода тепла извне, при этом имеет место пастеризация продукта, позволяющая увеличить срок хранения конечного продукта.

Похожие патенты RU2600748C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО ОРГАНО-МИНЕРАЛЬНОГО УДОБРЕНИЯ НА ОСНОВЕ ЖИДКОГО ВЕРМИКОМПОСТА (БИОГУМУСА) 2012
  • Титов Игорь Николаевич
  • Ириков Олег Васильевич
RU2558920C2
Биоорганическое средство в качестве гуминового удобрения, представляющее собой экстракт вермикомпоста 2021
  • Юлдашкин Олег Петрович
RU2784063C1
СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ 2021
  • Пиденко Сергей Анатольевич
  • Титов Тимофей Петрович
  • Жигулин Николай Николаевич
RU2760481C1
Способ переработки иловых отложений полей аэрации 2018
  • Шапиро Валерий Абрамович
RU2720909C2
Способ получения гуминового удобрения 2021
  • Юлдашкин Олег Петрович
RU2776454C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОЙ ГУМИНОВОЙ ОРГАНО-МИНЕРАЛЬНОЙ ПОДКОРМКИ ДЛЯ РАСТЕНИЙ 2015
  • Титов Игорь Николаевич
  • Мулярчик Геннадий Николаевич
RU2673713C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ДРЕВЕСИНЫ ЛИСТВЕННИЦЫ 2013
  • Телешев Андрей Терентьевич
  • Казиев Гарри Захарович
  • Коротеев Михаил Петрович
  • Кухарева Татьяна Семеновна
  • Коротеев Александр Михайлович
  • Мишина Елена Николаевна
  • Мишина Вера Юльевна
  • Нифантьев Эдуард Евгеньевич
RU2547107C1
СПОСОБ ПОЛУЧЕНИЯ БИОСТИМУЛЯТОРА РОСТА И РАЗВИТИЯ РАСТЕНИЙ ИЗ ГУМУСОСОДЕРЖАЩИХ ВЕЩЕСТВ 2002
  • Титов И.Н.
RU2253641C2
СПОСОБ ПОЛУЧЕНИЯ СТИМУЛЯТОРА РОСТА РАСТЕНИЙ 2016
  • Новиков Андрей Александрович
  • Петрова Дарья Андреевна
  • Молин Александр Александрович
  • Кузнецов Александр Альбертович
  • Ломакин Никита Вячеславович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Винокуров Владимир Арнольдович
RU2643723C1
Способ получения жидкого гуминового препарата 2016
  • Безуглова Ольга Степановна
  • Полиенко Елена Александровна
  • Горовцов Андрей Владимирович
  • Лыхман Владимир Анатольевич
RU2612210C1

Иллюстрации к изобретению RU 2 600 748 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТИМУЛЯТОРА РОСТА И РАЗВИТИЯ РАСТЕНИЙ ИЗ ГУМУСОСОДЕРЖАЩИХ ВЕЩЕСТВ

Изобретение относится к сельскому хозяйству. Способ получения жидкого препарата для стимуляции роста и развития растений включает предварительный помол, растворение в воде гумусосодержащего сырья и дезинтеграцию в роторно-пульсационном аппарате, при этом в качестве сырья используют вермикомпост и виноградные выжимки, причем сначала исходный вермикомпост с размером частиц, не превышающим 3 мм, и влажностью 55-57% обрабатывают в роторно-пульсационном аппарате водой, забуференной аммиаком или гидроксидом калия до рН в диапазоне 9,5-10,9, при массовом соотношении вермикомпост:вода, равном 1:3-4, и температуре 55-60°С в течение 2-3 минут, затем к полученной пульпе в роторно-пульсационный аппарат загружают виноградные выжимки с размером частиц, не превышающим 20 мм, влажностью 6-9%, при массовом соотношении виноградные выжимки:вермикомпост, равном 1:6-9, и проводят совместную дезинтеграцию при температуре 55-60°С до достижения частицами твердой фазы размера 5-10 мкм и рН в диапазоне 7,2-7,5, после чего полученную дисперсию в качестве целевого продукта разливают в тару. Изобретение позволяет получить более однородную дисперсию в режиме саморазогрева пульпы с одновременной ее пастеризацией. 1 з.п. ф-лы, 2 ил., 2 пр.

Формула изобретения RU 2 600 748 C1

1. Способ получения жидкого препарата для стимуляции роста и развития растений, включающий предварительный помол, растворение в воде гумусосодержащего сырья и дезинтеграцию в роторно-пульсационном аппарате, отличающийся тем, что в качестве сырья используют вермикомпост и виноградные выжимки, причем сначала исходный вермикомпост с размером частиц, не превышающим 3 мм, и влажностью 55-57% обрабатывают в роторно-пульсационном аппарате водой, забуференной аммиаком или гидроксидом калия до рН в диапазоне 9,5-10,9, при массовом соотношении вермикомпост:вода, равном 1:3-4, и температуре 55-60°С, в течение 2-3 минут, затем к полученной пульпе в роторно-пульсационный аппарат загружают виноградные выжимки с размером частиц, не превышающим 20 мм, влажностью 6-9%, при массовом соотношении виноградные выжимки:вермикомпост, равном 1:6-9, и проводят совместную дезинтеграцию при температуре 55-60°С до достижения частицами твердой фазы размера 5-10 мкм и рН в диапазоне 7,2-7,5, после чего полученную дисперсию в качестве целевого продукта разливают в тару.

2. Способ по п. 1, отличающийся тем, что совместную дезинтеграцию проводят в течение 2-5 минут.

Документы, цитированные в отчете о поиске Патент 2016 года RU2600748C1

RU 2012155656 A, 27.06.2014
СПОСОБ ПОЛУЧЕНИЯ БИОСТИМУЛЯТОРА РОСТА И РАЗВИТИЯ РАСТЕНИЙ ИЗ ГУМУСОСОДЕРЖАЩИХ ВЕЩЕСТВ 2002
  • Титов И.Н.
RU2253641C2
US 20080216397 A1, 11.09.2008.

RU 2 600 748 C1

Авторы

Телешев Андрей Терентьевич

Марынкин Игорь Александрович

Титов Игорь Николаевич

Чагава Яна Дауровна

Казиев Гарри Захарович

Даты

2016-10-27Публикация

2015-09-09Подача