Предлагаемое изобретение относится к медицине, в частности к измерению внутриглазного давления (ВГД), и может быть использовано для измерения офтальмотонуса в раннем посттравматическом периоде.
Известен способ измерения ВГД [А.С. 133171 (СССР), Способ тонометрии глаза и устройство для его осуществления / В.А. Пашков, Л.П. Чередниченко и В.К. Полторак. - А61В 3/16, 1957], основанный на получении реакции от глаза при воздействии на него механического вибратора. К глазу подводится устройство с вибрирующим зондом и фиксируется. На глаз оказывается давление с определенной силой устройством вместе с вибрирующим датчиком (зондом). Измеряется характер колебаний зонда, по которым судят о степени ВГД. Во время измерения ВГД положение устройства по отношению к глазу не меняют. Окончив измерение ВГД, устройство отводят от глаза.
Недостатками данного способа являются: низкая точность, связанная с влиянием на амплитуду колезонда плотности ретробульбарной клетчатки, влияющей на амплитуду колебаний всего глаза, соизмеримой с амплитудой колебаний зонда; значительная нагрузка на глаз тонометром (не менее 3-5 г), так как этот способ требует постоянного контакта тонометра с глазом; обязательная анестезия глаза, так как нагрузка в 3-5 г вызывает неприятные ощущения у больного; трудоемкость тонометрии.
Известен способ измерения ВГД [А.С. 18233788 (СССР), Способ тонометрии глаза и устройство для его осуществления / В.А. Пашков, Л.П. Чередниченко и В.К. Полторак. - А61В 3/16, 1993, бюл. №23], согласно которому приближают вибрирующий датчик к глазу до наступления контакта с ним и действуют на глаз до момента исчезновения сигнала на выходе вибрирующего датчика, отводят вибрирующий датчик от глаза и при этом измеряют максимальную амплитуду сигнала на выходе вибрирующего датчика, по значению которого судят об офтальмотонусе.
Недостатками данного способа являются: нестабильность во времени характеристик механического вибрирующего датчика; характеристики механического вибрирующего датчика в значительной мере подвержены влиянию окружающей среды, что приводит к изменению усилий в колебательной системе; амплитуда вынужденных акустических колебаний зависит от массы, механического сопротивления и других показателей, характеризующих общее состояние среды; максимальное значение амплитуды будет на частоте механического резонанса; резонансные явления появляются при совпадении частот звуковых (ультразвуковых) колебаний с частотами мод колеблющихся оболочек клеток и составляющих цитоплазмы клеток, а также молекул и других элементов и структур.
Прототипом является способ [Патент РФ №2361506 - Способ тонометрии глаза / Соколова Т.С., Иванова Л.Ю., Калинина Е.В., Леонтьев Е.А. - А61В 3/16, 2007], согласно которому приближают вибрирующий датчик к глазу до наступления контакта с ним и действуют на глаз до момента исчезновения сигнала на выходе вибрирующего датчика, отводят вибрирующий датчик от глаза и при этом измеряют максимальную амплитуду сигнала на выходе вибрирующего датчика, по значению которого судят об офтальмотонусе, вводят стабильную меру в виде костной ткани лобной части лица, для чего вначале приближают вибрирующий датчик к средней точке лобной части лица до наступления контакта с этой точкой и действуют на нее до момента исчезновения сигнала на выходе вибрирующего датчика, отводят вибрирующий датчик от средней точки лобной части лица и при этом измеряют максимальную амплитуду сигнала на выходе вибрирующего датчика, значение которой принимают за опорный сигнал, который сравнивают с измерительным сигналом.
Недостатками данного способа являются: низкая метрологическая эффективность из-за субъективного анализа максимального амплитудно-временного сигнала; асинхронность во времени между измерениями амплитуд измерительного и опорного сигналов; отсутствие нормируемого эквивалента, позволяющего интегрально судить об изменении амплитуды измерительного и опорного сигналов во времени.
Технической задачей способа является повышение метрологической эффективности, а именно точности тонометрии, за счет устранения методической и динамической погрешности.
Техническая задача достигается тем, что в способе тонометрии глаза, заключающемся в организации исследуемого и опорного сигналов при воздействии на глаз и лобную часть лица вибрирующим датчиком, который приближают к глазу и лобной части лица до наступления контакта с ними и действуют на глаз и лобную часть лица до момента исчезновения сигнала на выходе вибрирующего датчика, отводят вибрирующий датчик от глаза и лобной части лица и при этом измеряют амплитуду исследуемого сигнала на выходе вибрирующего датчика, в отличие от известных решений, нормируемым эквивалентом служит амплитудно-временная калибровочная характеристика с программно управляемыми предельными параметрами, для этого последовательно измеряют две амплитуды исследуемого и опорного сигналов в два момента времени, по которым рассчитывают предельные параметры исследуемой и опорной характеристик: предельную амплитуду и постоянную времени, по которым аппроксимируют исследуемую и опорную характеристики, из разницы которых находят действительную характеристику, по которой судят об офтальмотонусе.
Сущность способа поясняют фигуры 1-4. Калибровочная амплитудно-временная характеристика (АВХ), полученная из аппроксимации исследуемой и опорной характеристик по двум амплитудам в два момента времени, представлена на фиг. 1. На фиг. 2 изображены исследуемая U1, опорная U2 и действительная характеристики - ΔU. Эталонная 1 и калибровочная 2 АВХ - на фиг. 3, а на фиг. 4 приведена погрешность между ними, по которым рассчитывают предельные параметры исследуемой и опорной характеристик.
Способ тонометрии глаза включает 2 режима работы: 1) "измерение" и 2) "калибровка"(см. фиг. 1).
1) Режим "измерение" предназначен для организации исследуемого и опорного сигналов при воздействии на глаз и лобную часть лица вибрирующим датчиком, который приближают к глазу и лобной части лица до наступления контакта с ними и действуют на глаз и лобную часть лица до момента исчезновения сигнала на выходе вибрирующего датчика, отводят вибрирующий датчик от глаза и лобной части лица, костная ткань которой служит нормируемой мерой (см. фиг. 1).
2) Режим "калибровка" предназначен для ввода нормируемого эквивалента, которым служит калибровочная амплитудно-временная характеристика Ui (фиг. 1) с программно управляемыми предельными параметрами. Для этого последовательно измеряют две амплитуды исследуемого U1 и опорного U2 сигналов в два момента времени t1 и t2 (фиг. 1), по которым рассчитывают предельные параметры исследуемой U1 и опорной U2 (фиг. 2) характеристик: предельную амплитуду U0 и постоянную Т0 времени. По ним аппроксимируют исследуемую U1 и опорную U2 характеристики, из разницы которых находят действительную ΔU характеристику, по которой судят об офтальмотонусе.
Далее определяют предельные параметры калибровочной амплитудно-временной характеристики (АВХ). Математическая модель АВХ выбрана в экспоненциальной форме F0(Ф)=U(t,U0,T0):
где U0 и Т0 - предельные параметры АВХ: предельное напряжение и постоянная времени.
Определяют параметры АВХ, решая систему из двух уравнений:
где U1 - амплитуда сигнала в момент времени t1, U2 - амплитуда сигнала в момент времени t2.
Параметр U0 рассчитывают из инверсной (2) системы уравнений модели
Поделим второе уравнение системы (3) на первое, и с учетом соотношения моментов времени t2=n·t1, из логарифмического уравнения
после экспоненцирования, запишем степенное уравнение
где n=t2/t1.
Разложим левую часть равенства по формуле бинома Ньютона:
отсюда приведем к квадратному уравнению
После сокращения единиц и понижения степени на U0 находим предельное напряжение
Из первого уравнения системы (3) определяем алгоритм оптимизации постоянной времени
По найденным предельным параметрам восстанавливают исследуемую характеристику Ui в экспоненциальной форме по формуле (1) (фиг. 1). Таким же образом восстанавливают опорную характеристику, затем получают следующую систему
Из разницы исследуемой и опорной характеристик соответственно получают калибровочную характеристику ΔU, по которой судят об офтальмотонусе (7) (фиг. 2).
Определяем калибровочную характеристику ΔU0 здорового человека. Судить об офтальмотонусе любого пациента можно, сравнивая полученную ΔU для него характеристику с нормированной ΔU0 характеристикой.
По алгоритму возможны три случая: 1) если ΔUi=ΔU0, то пациент здоров; 2) если ΔUi>ΔU0, то у пациента ВГД повышено; 3) если ΔUi<ΔU0, то у пациента ВГД понижено (8).
Докажем эффективность предлагаемого способа тонометрии глаза.
Эффективность предлагаемого способа достигается в результате введения нормируемого эквивалента, которым служит калибровочная амплитудно-временная характеристика с программно управляемыми предельными параметрами.
1. Снижение методической погрешности и работоспособность метода доказываются тождественностью предельных параметров U0 и Т0 амплитудно-временной характеристики, определяемых по любым ij-ым сочетаниям двух амплитуд Uij измеренных сигналов в два момента времени с периодом 0,1 с. Полученные в результате эксперимента данные для каждого момента времени приведены в таблице.
Ui - амплитуды исследуемого сигнала; U0i и T0i - предельные параметры исследуемой и опорной характеристик; εU0i и εT0i - погрешности определения предельных параметров калибровочной характеристики; εF - погрешность между экспериментальной и калибровочной функциями моделирования.
Из таблицы видно, что при увеличении амплитуд Ui сигнала в десять раз (с 2,66 до 26,95) тождественность предельных параметров U0i и T0i с погрешностью εU0i~εT0i<0,2%. При этом методическая погрешность εF между экспериментальной и калибровочной функциями не превышает 2·10-14%.
2. Снижение динамической погрешности определяется сравнением погрешностей предельных параметров εU0i~εT0i предлагаемого способа и способа-прототипа ε+- изменения максимальной амплитуды.
Динамическая погрешность измерения максимальной амплитуды определяется как соотношение амплитуд Ai-1 и Ai+1 к Ai (фиг. 1).
В результате эксперимента установлено, что ε+=12,79% и ε-=12,44%.
Динамическая погрешность определения предельных параметров амплитудно-временной характеристики не превышает 0,196%.
следовательно, эффективность по точности увеличилась на два порядка.
Таким образом, введение калибровочной амплитудно-временной характеристики, которая служит нормируемым эквивалентом, в отличие от известных решений устраняет методическую и уменьшает на два порядка динамическую погрешности измерения. Это приводит к повышению точности измерения ВГД, что, в свою очередь, позволяет поставить более точный диагноз заболевания и провести соответствующее лечение.
название | год | авторы | номер документа |
---|---|---|---|
Способ тонометрии глаза | 2017 |
|
RU2667962C1 |
СПОСОБ ТОНОМЕТРИИ ГЛАЗА | 2007 |
|
RU2361506C2 |
Способ тонометрии глаза и устройство для его осуществления | 1991 |
|
SU1823788A3 |
СПОСОБ ТОНОМЕТРИИ ГЛАЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2102917C1 |
Способ определения показаний к хирургическому лечению первичной открытоугольной глаукомы | 2016 |
|
RU2614971C1 |
Способ измерения внутриглазного давления у пациентов, перенесших радиальную кератотомию | 2016 |
|
RU2610556C1 |
ТОНОМЕТР ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ ЧЕРЕЗ ВЕКО | 2005 |
|
RU2302191C1 |
СПОСОБ ИЗМЕРЕНИЯ ДАВЛЕНИЯ ВНУТРИ ОРГАНОВ ЧЕРЕЗ ИХ КОЖНЫЙ ПОКРОВ И ИЗМЕРИТЕЛЬНЫЙ ТОНОМЕТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2303943C2 |
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ | 2011 |
|
RU2485879C1 |
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ | 2018 |
|
RU2675020C1 |
Предлагаемое изобретение относится к медицине, в частности к измерению внутриглазного давления, и может быть использовано для измерения офтальмотонуса в раннем посттравматическом периоде. Организуют исследуемый и опорный сигналы при воздействии на глаз и лобную часть лица вибрирующим датчиком, который приближают к глазу и лобной части лица до наступления контакта с ними и действуют на глаз и лобную часть лица до момента исчезновения сигнала на выходе вибрирующего датчика. Отводят вибрирующий датчик от глаза и лобной части лица, костная ткань которой служит стабильной мерой. При этом нормируемым эквивалентом служит амплитудно-временная калибровочная характеристика с предельными параметрами, для определения которых последовательно измеряют две амплитуды исследуемого и опорного сигналов в моменты времени t1 и t2, по которым рассчитывают предельные параметры исследуемой и опорной характеристик: предельную амплитуду и постоянную времени, по которым аппроксимируют исследуемую и опорную характеристики, из разницы которых находят действительную характеристику, по которой судят об офтальмотонусе. Способ позволяет повысить метрологическую эффективность, а именно точность тонометрии, за счет устранения методической и динамической погрешности. 1 табл., 4 ил.
Способ тонометрии глаза, заключающийся в организации исследуемого и опорного сигналов при воздействии на глаз и лобную часть лица вибрирующим датчиком, который приближают к глазу и лобной части лица до наступления контакта с ними и действуют на глаз и лобную часть лица до момента исчезновения сигнала на выходе вибрирующего датчика, отводят вибрирующий датчик от глаза и лобной части лица, костная ткань которой служит стабильной мерой, отличающийся тем, что нормируемым эквивалентом служит амплитудно-временная калибровочная характеристика с предельными параметрами, для определения которых последовательно измеряют две амплитуды исследуемого и опорного сигналов в моменты времени t1 и t2, по которым рассчитывают предельные параметры исследуемой и опорной характеристик: предельную амплитуду и постоянную времени, по которым аппроксимируют исследуемую и опорную характеристики, из разницы которых находят действительную характеристику, по которой судят об офтальмотонусе.
СПОСОБ ТОНОМЕТРИИ ГЛАЗА | 2007 |
|
RU2361506C2 |
СПОСОБ ТОНОМЕТРИИ ГЛАЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2102917C1 |
ШАМШИНОВА A.M | |||
и др | |||
Функциональные методы исследования в офтальмологии | |||
Способ приготовления мыла | 1923 |
|
SU2004A1 |
HALLBERG P., et al | |||
Symmetric sensor for applanation resonance tomometry of the eye | |||
Med Biol Eng Comput | |||
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Авторы
Даты
2016-10-27—Публикация
2015-03-31—Подача