СВЕТОДИОДНЫЙ ИСТОЧНИК СВЕТА С УДАЛЕННЫМ ЛЮМИНОФОРОМ Российский патент 2016 года по МПК H01L33/50 H01K5/00 F21K99/00 

Описание патента на изобретение RU2604059C2

Изобретение относится к светотехнике и может быть использовано для упрощения конструкций, повышения выхода излучения и улучшения спектра излучения источника света на основе светодиодов.

Известны люминофорные слои и колбы для светодиодных источников излучения, изготовленных по технологии удаленного люминофора. Для улучшения цветности и эффективности, равномерности излучения по всем направлениям светодиодного источника света используется люминофор, который размещается на прозрачной для видимого излучения колбе, а светодиод располагается на месте нити накала лампы накаливания. Причем для исключения поглощения света люминофора поверхностью светодиода расстояние между светодиодом и поверхностью люминофора должно быть больше размера светодиода (Шуберт Ф.Е. Светодиоды, пер. с англ. под ред. А.Э. Юновича - М.: Физматлит, 2008), (Goetz W. White lighting (illumination) with LEDs // Proceedings of the 5th International Conference on Nitride Semiconductors, 25-30 May 2003).

Недостатками известного решения являются: форма поверхности колбы не обеспечивает равномерность свечения люминофора на поверхности колбы из-за неравномерной индикатрисы излучения светодиода; слой люминофора располагается не внутри материала колбы; сниженная эффективность люминофора из-за процессов переотражения между зернами кристалла падающего излучения светодиода и преобразованного люминофором излучения.

Известен источник света, содержащий светорассеивающую колбу из оптически прозрачного материала с нанесенным на поверхность или на часть поверхности слоем люминофора или смеси люминофоров, или введенным в объем или в часть объема частицами люминофора или смеси люминофоров, с установленными внутри ультрафиолетовыми или синими светодиодами, светодиодной матрицей или светодиодными матрицами (RU 110865, МПК H01K 5/00, опубл. 27.11.2011).

Недостатком известного устройства является форма колбы, не обеспечивающая равномерность свечения люминофора на ней, и слой люминофора располагается не внутри материала колбы.

Известен светодиодный источник белого света с удаленным люминофором, содержащий колбу из оптически прозрачного материала, во внутреннюю поверхность которой внедрен люминофор. Внутри колбы установлены светодиоды, излучающие в области возбуждения слоя люминофора (RU 2475887, МПК H01L 27/15, опубл. 20.02.2013).

Недостатками известного решения являются неоптимальное распределение люминофора по толщине колбы, что резко снижает эффективность излучения света (А.П. Иванов, К.Г. Предко. Оптика люминесцентного экрана. Минск, 1984. с. 85), сложность изготовления всего источника света для обеспечения равномерного свечения поверхности колбы.

Известен преобразователь спектра оптического излучения. Это техническое решение является наиболее близким аналогом. В нем люминофорный слой называется преобразователем спектра оптического излучения. Он преобразует спектр падающего на него излучения, в излучение другого спектра. Для повышения эффективности преобразования излучения в данном изобретении предлагается помещать люминофор в прозрачную для падающего и преобразованного излучения основу с коэффициентом преломления больше единицы и меньше n2, где n - коэффициент преломления люминофора. Это приводит к увеличению выхода излучения люминесцентного слоя за счет снижения процессов рассеяния как падающего излучения, так и преобразованного излучения (RU 2075105, МПК G02F 2/02, опубл. 10.03.1997).

Недостатком известного решения является неравномерная освещенность светодиодом слоя люминофора и, как следствие, неравномерная интенсивность свечения люминофора на поверхности колбы.

Технический результат заключается в повышении эффективности источника света и обеспечении равномерной освещенности колбы светодиодного источника света за счет помещения слоя люминофора во внутреннюю поверхность колбы и выбора особой поверхности формы.

Технический результат достигается тем, что светодиодный источник света с удаленным люминофором содержит колбу из оптически прозрачного материала с коэффициентом преломления больше единицы и меньше квадрата коэффициента преломления люминофора. Во внутреннюю поверхность колбы внедрен люминофор. Внутри колбы установлены светодиоды, излучающие в области возбуждения слоя люминофора. Поверхность колбы имеет форму, рассчитанную по индикатрисе излучения светодиодов и обеспечивающую одинаковую освещенность светодиодами во всех точках поверхности колбы. Люминофор внедрен во внутреннюю поверхность колбы на глубину, равную оптимальной толщине слоя люминофора, обеспечивающего эффективное преобразование излучения.

Сущность изобретения поясняется чертежами. На фиг. 1 приведен светодиодный источник света; на фиг. 2 - полярная система координат для расчета геометрии колбы; на фиг. 3 - индикатриса излучения светодиода, измеренная на расстоянии 5 см от светодиода; на фиг. 4 - форма сечения поверхности колбы одинаковой освещенности, рассчитанная с помощью соотношения (1); на фиг. 5 - поверхностная яркость свечения колбы в относительных единицах.

Светодиодный источник света содержит подложку 1 со светодиодами 2, накрытыми колбой 3, из оптически прозрачного материала (например, органического) с коэффициентом преломления больше единицы и меньше квадрата коэффициента преломления люминофора. Во внутреннюю поверхность колбы 3, обращенную к светодиодам 2, внедрен люминофор 4 на глубину, равную оптимальной толщине слоя люминофора, обеспечивающего эффективное преобразование излучения. Форма поверхности колбы 3 рассчитана по индикатрисе излучения светодиодов и обеспечивает ее одинаковую освещенность светодиодами 2 во всех точках поверхности колбы 3. Светодиоды 2 излучают в области возбуждения слоя люминофора 4.

Устройство работает следующим образом. Излучение светодиодов 2 преобразуется в видимое излучение люминофором 4, который внедрен во внутреннюю поверхность колбы 3. Эффективное преобразование излучения светодиодов в видимое обеспечивается:

1. оптимальной толщиной слоя люминофора, внедренного в внутреннюю поверхность колбы;

2. в результате резкого уменьшения рассеяния возбуждающего света и света люминесценции за счет более высокого коэффициента преломления материала колбы, чем воздуха.

Равномерное освещение светодиодом колбы во всех точках ее поверхности обеспечивается формой колбы, сечение которой приведено на фиг. 4.

Ниже приведен вывод соотношения, позволяющего рассчитывать геометрию поверхности колбы, обеспечивающую ее одинаковую освещенность светодиодами во всех точках поверхности. Используем полярную систему координат (фиг. 2). Поверхность колбы образуется путем вращения кривой, получаемой в полярной системе координат относительно оси, проходящей через начало координат и точку, куда падает максимальная интенсивность от светодиода. Согласно определению освещенность площадки dS поверхности колбы светодиодом равна:

где I(α) - сила света в канделах; ρ - расстояние до источника света; α - угол падения луча света относительно нормали к поверхности. Для максимальной освещенности примем α=0:

В полярных координатах угол µ между касательной к кривой ρ=ρ(φ) и полярным радиус-вектором определяется формулой (G. Korn, Т. Korn. Mathematikal handbook. 1968):

Требование одинаковой освещенности означает выполнение равенства: Е=Emax. Учтем, что α=(π/2)-µ, тогда

Из соотношения (3), используя тригонометрические формулы, получим:

Используя соотношения (5) из (4), получаем:

Введем обозначения: ,

Сделав алгебраические преобразования из соотношения (6), получим:

A(ϕ, r) - нормированная индикатриса излучения источника света. Выражение (7) применимо для случая многих источников света. Например, источник света состоит из нескольких светодиодов. В этом случае A(ϕ, r) - нормированная индикатриса излучения нескольких светодиодов.

Пример расчета: На фиг. 3 приведена индикатриса излучения светодиода, измеренная на расстоянии 5 см от синего светодиода (λ=390 нм). На фиг. 4 приведена рассчитанная с помощью соотношения (7) форма сечения поверхности колбы. Поверхность, полученная вращением кривой (фиг. 4) обеспечивает одинаковую освещенность светодиодом, с индикатрисой излучения, изображенной на фиг. 3 во всех точках поверхности колбы. Как видно из фиг. 2, форма колбы не является шаровидной. На фиг. 5 приведена экспериментальная индикатриса излучения синего светодиода с колбой с люминофором ZnS-Cu. Из фиг. 5 видно, что практически во всех точках колбы яркость свечения колбы одинакова.

По сравнению с известным решением предлагаемое позволяет повысить эффективность источника света и обеспечить равномерную яркость колбы светодиодного источника света за счет помещения слоя люминофора во внутреннюю поверхность колбы и выбора особой поверхности формы.

Похожие патенты RU2604059C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВИДИМОГО СВЕТА И ЛЮМИНЕСЦЕНТНЫЕ ИСТОЧНИКИ НА ЕГО ОСНОВЕ (ВАРИАНТЫ) 2006
  • Грузинцев Александр Николаевич
  • Никифорова Татьяна Владимировна
RU2313157C1
СВЕТОДИОДНАЯ ЛАМПА БЕЛОГО СВЕЧЕНИЯ 2009
  • Сарычев Генрих Сергеевич
  • Сысун Виктор Викторович
RU2408816C2
СВЕТОИЗЛУЧАЮЩЕЕ ТЕЛО И СВЕТОДИОДНОЕ ОСВЕТИТЕЛЬНОЕ УСТРОЙСТВО, СОДЕРЖАЩЕЕ ТАКОЕ ТЕЛО 2014
  • Соколов Юрий Борисович
RU2565419C1
Световой прибор 2012
  • Силкин Евгений Михайлович
RU2628014C2
СВЕТОДИОДНАЯ ЛАМПА 2011
  • Гэ Шичао
  • Гэ Техань
  • Лю Хуабинь
RU2546469C2
СВЕТОДИОДНЫЙ ИСТОЧНИК БЕЛОГО СВЕТА С КОМБИНИРОВАННЫМ УДАЛЕННЫМ ФОТОЛЮМИНЕСЦЕНТНЫМ КОНВЕРТЕРОМ 2011
  • Дейнего Виталий Николаевич
  • Сощин Наум Пинхасович
  • Уласюк Владимир Николаевич
RU2502917C2
СВЕТОДИОДНАЯ ЛАМПА 2011
  • Назаркин Игорь Вячеславович
RU2470220C2
СИСТЕМА ДЛЯ МЕЖРЯДКОВОЙ ДОСВЕТКИ ТЕПЛИЧНЫХ РАСТЕНИЙ 2014
  • Ляпин Иван Дмитриевич
  • Маракулин Михаил Евгеньевич
  • Фролов Кирилл Николаевич
RU2565724C1
СВЕТОДИОДНЫЙ ИСТОЧНИК БЕЛОГО СВЕТА С БИОЛОГИЧЕСКИ АДЕКВАТНЫМ СПЕКТРОМ ИЗЛУЧЕНИЯ 2019
  • Уласюк Владимир Николаевич
RU2693632C1
СПОСОБ СОЗДАНИЯ СВЕТОИЗЛУЧАЮЩЕЙ ПОВЕРХНОСТИ И ОСВЕТИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2010
  • Соколов Юрий Борисович
RU2510824C1

Иллюстрации к изобретению RU 2 604 059 C2

Реферат патента 2016 года СВЕТОДИОДНЫЙ ИСТОЧНИК СВЕТА С УДАЛЕННЫМ ЛЮМИНОФОРОМ

Изобретение относится к светотехнике и может быть использовано для упрощения конструкций, повышения выхода излучения и улучшения спектра излучения источника света на основе светодиодов. Технический результат заключается в повышении эффективности источника света и обеспечении равномерной освещенности колбы светодиодного источника света за счет помещения слоя люминофора во внутреннюю поверхность колбы и выбора особой поверхности формы. Технический результат достигается тем, что светодиодный источник света с удаленным люминофором содержит колбу из оптически прозрачного материала с коэффициентом преломления больше единицы и меньше квадрата коэффициента преломления люминофора, во внутреннюю поверхность которой внедрен люминофор. Внутри колбы установлены светодиоды. Поверхность колбы из органического материала имеет форму, рассчитанную по индикатрисе излучения светодиодов и обеспечивающую одинаковую освещенность светодиодами во всех точках поверхности колбы. Люминофор внедрен во внутреннюю поверхность колбы на глубину, равную оптимальной толщине слоя люминофора, обеспечивающего эффективное преобразование излучения. 5 ил.

Формула изобретения RU 2 604 059 C2

Светодиодный источник света с удаленным люминофором, содержащий колбу из оптически прозрачного материала с коэффициентом преломления больше единицы и меньше квадрата коэффициента преломления люминофора, во внутреннюю поверхность которой внедрен люминофор, внутри колбы установлены светодиоды, излучающие в области возбуждения слоя люминофора, отличающийся тем, что поверхность колбы имеет форму, рассчитанную по индикатрисе излучения светодиодов и обеспечивающую одинаковую освещенность светодиодами во всех точках поверхности колбы, при этом люминофор внедрен во внутреннюю поверхность колбы на глубину, равную оптимальной толщине слоя люминофора, обеспечивающего эффективное преобразование излучения.

RU 2 604 059 C2

Авторы

Денисов Борис Николаевич

Горюнов Владимир Александрович

Гришаев Владимир Яковлевич

Лавренко Лилия Максимовна

Никишин Евгений Васильевич

Даты

2016-12-10Публикация

2015-02-10Подача