Область техники
Изобретение относится к технической оптике, а конкретно к фотометрии, и предназначено для исследования и контроля характеристик оптико-электронных систем (ОЭС), может быть использовано в конструкции наземных тест-объектов пассивной инфракрасной штриховой мире, используемых в условиях полигона при испытаниях авиационных инфракрасных систем дистанционного зондирования различного назначения.
Уровень техники
Оценка качества изображения ОЭС осуществляется с помощью штриховой ИК-миры по разрешающей способности, которая определяет такую наивысшую пространственную частоту, когда еще наблюдается промежуток между штрихами, (см. Кулагин С.В., Апарин Е.М. Проектирование фото- и киноприборов. - М.: Машиностроение, 1986, с. 49-50).
Известны эталонные тест-объекты, приведенные в статье «Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric of High Resolution Airborne Hnaging Systems» Eija Honkavaara, финский геодезический институт, 2010 г., журнал «Дистанционное зондирование» №2, 2010.
Тест-объекты, расположенные на полигоне в Финляндии, выполнены в виде стационарных участков для радиометрического тестирования бортовых систем наблюдения высокого разрешения. В состав тест-объектов входят как штриховые миры с известной геометрией для использования в летных испытаниях при оценке разрешающей способности оптико-электронных систем, так и площадные структуры, выполненные из различных материалов: сыпучего гравия различных цветов, мрамора, бетона, имеющих различные излучательные свойства.
Приведенные тест-объекты, во-первых, могут быть использованы только в видимом и ближнем ИК-диапазонах электромагнитного спектра, а заявляемая пассивная инфракрасная мира работает во всем ИК-диапазоне: от 0,7 до 14 мкм; во-вторых, на финском полигоне используются стационарные, а не мобильные тест-объекты; в-третьих, тепловой контраст их не регулируется и, в четвертых, они не могут использоваться долгое время для оценки характеристик систем наблюдения, так как после выпадения осадков (дождя, снега, инея и т.п.) отражающие характеристики тест-объектов изменяются и не соответствуют исходным.
В известных наземных тест-объектах, предназначенных для контроля характеристик инфракрасных систем наблюдения, использовались излучающие поверхности, имеющие одинаковые коэффициенты излучения, но разные температуры (см. A.M. Дубиновский, Э.Д. Панков «Стендовые испытания и регулировка оптико-электронных приборов», Ленинград, изд. Машиностроение, 1996 г.; патент США №5041735 A, МКИ G01J 1/00 от февраля 1990 г.; патент США №5097139, МКИ G011J 1/100 от апреля 1991 г.).
Разность потоков излучения (тепловой контраст) между элементами такого тест-объекта и фоном создавался за счет принудительного нагрева его элементов. Известно, что плотность потока излучения R определяется законом Стефана-Больцмана и зависит как от температуры T, так и от коэффициента излучения ε поверхности объекта
R=ε·σ·T4,
где σ - постоянная Стефана-Больцмана.
В качестве тепловых источников излучения использовали установки с электроподогревом или кюветы (емкости) с проточной водой. Такой способ создания теплового контраста с использованием принудительного нагрева элементов получил название активный. Конструктивное исполнение активных тест-объектов очень трудоемкое, требует подключения электроэнергии для нагрева элементов, прокачки и подогрева воды, что ограничивает их применение в изменяющихся погодных условиях. Эксплуатация их в полевых условиях сложна, а при выпадении осадков - невозможна [патент США №5041735, МКИ G01J 1/00 от февраля 1990 г.].
Некоторые из недостатков применения активных мир устранены в пассивной инфракрасной мире, тепловой контраст которых создается за счет использования материалов с разными коэффициентами излучения (отражения) поверхности. Так установка «пассивная инфракрасная разрешающая мишень», предназначенная для измерения разрешающей способности инфракрасных разведывательных систем, включает подложку из однородного материала, сохраняющего тепло, и размещенные над ней, в виде стандартной конфигурации, штриховые элементы. Температура такой подложки превышает среднюю температуру окружающей земной поверхности (фона). Над подложкой устанавливается инфракрасная мира, штриховые элементы которой выполнены в виде экранирующих (отражающих) перфорированных алюминиевых пластин, имеющих отверстия (перфорацию), суммарная площадь которых составляет от 50 до 80% общей площади пластины [патент США №4058734, МПК G01J01J 1/100 за 1977].
Размещая над подложкой экранирующие алюминиевые пластины с определенной перфорацией, добиваются необходимого теплового контраста между окружающим фоном и пластинами. В такой пассивной мишени для изменения теплового контраста необходим набор алюминиевых пластин с различной перфорацией. При изменении времени суток величина падающего на земную поверхность солнечного излучения изменяется, что приводит к необходимости смены пластин с другой перфорацией для поддержания постоянного теплового контраста «мишень-фон». Отсутствие плавного регулирования теплового контраста в изменяющихся внешних условиях не позволяет получить точно заданный тепловой контраст миры с фоном. Эксплуатацию миры усложняет также частая замена достаточно большого набора экранирующих пластин, и затраты времени на установку нового температурного режима, что приводит к снижению производительности измерений, повышает их трудоемкость и увеличивает объемы и сроки испытаний.
Известен аналог пассивной инфракрасной миры с системой автоматического регулирования. Мира содержит рабочие штриховые элементы (РШЭ), размещенные на однородной подстилающей поверхности в виде двух одинаковых групповых наборов m - различных типоразмеров из n - штриховых элементов в каждом, и один отдельно установленный измерительный штриховой элемент (ИШЭ). РШЭ выполнены в виде жесткой прямоугольной рамы с подвижным модулем, по всей длине которых установлены под небольшим углом 5°…10° к горизонтальной поверхности параллельно друг к другу узкие прямоугольные пластины, имеющие, соответственно, максимальные и минимальные значения коэффициентов излучения и формирующие периодическую структуру с регулируемым интегральным коэффициентом излучения при линейном перемещении подвижного модуля. В систему введен измеритель разности радиационных температур - двухканальный дифференциальный инфракрасный радиометр для поддержания заданного значения разности радиационных температур всех РШЭ в заданных пределах [патент РФ №2387969, МПК G01M 11/00, G01J 1/00, 1/20, 2008].
Для реализации коэффициента излучения пластин ε≅1,0 используют группу алюминиевых пластин, окрашенных специальной краской, которые устанавливают в рамы неподвижно, а для реализации получения минимального коэффициента излучения ε≅0 используют группу неокрашенных полированных алюминиевых пластин, которые устанавливают в подвижные модули рам.
В данном устройстве система автоматического регулирования выполнена в виде двухконтурной системы замкнутого типа так, что первый контур обеспечивает установку заданного значения разности температуры между ИШЭ и фоном, а второй контур - обеспечивает синхронное управление положением подвижных модулей всех РШЭ по сигналам управления, пропорциональным разностям сигналов, формируемых соответствующими датчиками положения измерительного и рабочих штриховых элементов.
Применение двухконтурной системы регулирования заданного значения разности температур между окружающим фоном и штриховыми элементами миры и двух групп подвижных и неподвижных пластин с различными коэффициентами излучения усложняет конструкцию инфракрасной миры, а также требует дополнительной установки исполнительных электромеханизмов перемещения пластин, электронных блоков управления и электропитания, что, в свою очередь, ведет к тепловому загрязнению установки, окружающей воздушной и фоновой обстановки, появлению большого количества и достаточно мощных аномальных источников тепла.
Известна пассивная инфракрасная мира с плавно регулируемым тепловым контрастом [патент РФ №2105956, МПК G01J 1/04, 1998].
В прототипе миры, размещенной на однородной подстилающей поверхности, штриховые элементы выполнены в виде прямоугольных рам, с установленными в них раскрывающимися экранирующими пластинами, имеющими механизм их перемещения (раскрыва). В раскрытом состоянии пластины перекрывают все сечение рамы. Раскрывающиеся экранирующие пластины выполнены в виде попарно связанных между собой шарнирами створок. Створки снабжены по своим концам штырями. При этом штыри одной из створок установлены в отверстиях боковых стенок рамы с возможностью вращения, а штыри другой створки размещены в продольных пазах, выполненных в раме, и связаны с механизмом их перемещения. Такое выполнение штриховых элементов миры позволяет получить регулируемый тепловой контраст с подстилающей поверхностью при различных погодных условиях и не требует значительных затрат времени на его установку. Конструкция миры достаточно проста. Мира может эксплуатироваться в различное время года в простых и сложных метеоусловиях.
Недостатком миры является то, что вторая оборотная сторона экранирующих пластин миры в устройстве не используется, что ограничивает динамический диапазон устанавливаемой разности радиационных температур при испытаниях. Контраст миры относительно фона может быть установлен только отрицательным (Тш<Тф).
Сущность изобретения
Технический результат, на достижение которого направлено изобретение, заключается в расширении динамического диапазона регулирования заданной разности радиационных температур между фоном и штриховыми элементами миры, как следствие, повышении точности, установки и поддержания заданной при испытаниях разности радиационных температур; возможности установки как положительных, так и отрицательных контрастов миры с переходом через «0°»; эксплуатации в полигонных условиях в любое время года, в простых и сложных метеоусловиях и повышению производительности испытаний.
Для достижения указанного технического результата в пассивной инфракрасной штриховой мире с плавно регулируемым тепловым контрастом, содержащей штриховые элементы различных типоразмеров, выполненными в виде прямоугольных рам с установленными в них поворотными экранирующими прямоугольными пластинами, инфракрасный радиометр, измеряющий значения радиационных температур подстилающей поверхности (фона) и пластин, и связанный с ним ПЭВМ типа «Notebook» для усреднения измерений и вычисления текущего значения разности радиационных температур ΔT, соответствующего определенному углу поворота пластин, установленного оператором, экранирующие пластины с двух сторон выполнены с излучающими покрытиями, имеющими, соответственно, максимальный и минимальный коэффициенты излучения. Оси вращения пластин установлены в отверстиях продольных стенок металлических рам штриховых элементов. На внешней стороне продольной стенки рамы установлен механизм поворота пластин, включающий червячную передачу с ручкой привода, пару зубчатых колес червячной передачи и шестернями, находящимися в сцепление друг с другом, установленными на осях вращения пластин. Механизм выполнен с возможностью синхронного поворота каждой из шестерен и пластин вокруг своей оси на угол в диапазоне от 0 до 360° и фиксации их в этом положении. При этом для получения теплового контраста в диапазоне ΔT=2°…10°C в облачную погоду, пластины поворачивают на угол от 0 до 180°, а при угле +90° все сечение рамы перекрывают пластины со стороной с минимальным коэффициентом излучения, а в ясную погоду, пластины поворачивают на угол 180 до 360°, при угле +270°, все сечение рамы перекрывают пластины со стороной с максимальным коэффициентом излучения.
Для расширения диапазона устанавливаемой разности радиационных температур миры и фона, повышения точности измерения используются обе стороны поворотной дюралюминиевой экранирующей пластины с разными излучающими покрытиями, одна из сторон - матированная и покрытая черной краской с максимальным коэффициентом излучения ε≅1,0, вторая сторона - отполированная с минимальным коэффициентом излучения ε≅0,01…0,05. При этом создается как положительный, так и отрицательный тепловой контраст миры относительно фона.
Признаки, отличающие конструкцию предлагаемой штриховой миры, от наиболее близкой к ней мире, известной по патенту №2105956 (прототип), характеризуют наличие того, что штриховые элементы миры снабжены механизмом поворота каждой пластины вокруг своей оси на угол в диапазоне от 0 до 360° и могут быть зафиксированы в этом положении. Плавное регулирование угла поворота пластин дает возможность установить ΔT равное заданному по эксперименту. Количество штриховых элементов, ширина штрихового элемента и расстояние между ними в каждой секции одинаковы. Прямоугольные пластины ИК-миры экранируют при повороте тепловой поток от подстилающей поверхности. Важным преимуществом конструкции предлагаемой миры является использование двух сторон дюралюминиевых экранирующих пластин с различными коэффициентами излучения: одна сторона - матированная и покрыта черной краской с ε≅1,0, вторая сторона - отполированная с ε≅0,01…0,05.
- расширен динамический диапазон регулирования заданной разности радиационных температур между фоном и штриховыми элементами миры за счет использования двух сторон вращающихся экранирующих пластин с различными коэффициентами излучения ε и, как следствие, повышения точности, приблизительно в 2 раза, установки и поддержания заданной при испытаниях разности радиационных температур;
- возможности установки как положительных, так и отрицательных контрастов миры с переходом через «0°».
Использование поворотных экранирующих пластин, позволяющих получить плавно регулируемый тепловой контраст с подстилающей поверхностью при различных погодных условиях, приводит к повышению производительности испытаний. Предлагаемая пассивной инфракрасной миры может эксплуатироваться в полигонных условиях в любое время года, в простых и сложных метеоусловиях.
Перечень фигур
На фигуре 1 представлена схема расположения штриховых элементов пассивной штриховой инфракрасной миры на подстилающей поверхности (фоне), где
- 1 - подстилающая поверхность;
- 2 - штриховой элемент пассивной штриховой инфракрасной миры,
- (2a)-сгруппированные штриховой элемент в секции различных типоразмеров, и ориентированных по направлению полета (НП).
На фигуре 2 показан штриховой элемент пассивной инфракрасной миры, где:
- 3 -металлическая рама с набором экранирующих пластин (2);
- 4 - продольная стенка рамы с механизмом поворота пластин;
- 5 - поперечная стенка рамы;
- 6 - дюралюминиевая экранирующая пластина внутри рамы, с двухсторонним покрытием: одна сторона - пластина с матированной стороной, окрашенной черной краской, вторая сторона пластины с отполированной поверхностью.
На фигуре 3 показан внешний вид рамы с механизмом поворота пластин, позволяющий выполнять поворот экранирующих пластин, на заданный угол в заданном направлении.
- 3 - жесткая рама с набором экранирующих пластин;
- 6 - дюралюминиевая пластина;
- 8 - механизм поворота экранирующих пластин;
- 9 - червячная передача с ручкой привода;
- 10 - пара зубчатых колес червячной передачи;
- 11 - шестерни, находящиеся в сцеплении друг с другом, установленные на осях поворота пластин, выполненные с возможностью синхронного поворота каждой из шестерен вокруг своей оси на любой угол в диапазоне от 0° до 360° и фиксирования их в этом положении.
На фигуре 4 представлена схема позиционирования пластин при различных углах поворота в штриховом элементе миры, (вид сбоку).
Позиция 4а) соответствует углу полворота пластин α=+900, 4б соответствует углу поворота пластин α=+135°; 4в) соответствует углу поворота пластин α=+180°; 4г) соответствует углу поворота пластин α=+270°; 4д) соответствует углу поворота пластин α=+270° (0°), где (1) - подстилающая поверхность (фон) (1)-, дюралюминиевая экранирующая пластина внутри рамы, с двухсторонним покрытием: одна сторона (6) - отполированная поверхность; вторая сторона (6a) - матированная стороной, окрашенная черной краской.
На фигуре 5 представлена функциональная схема установки и регулирования теплового контраста пассивной инфракрасной мирой, включающей раму (3) с экранирующими пластинами (6), измерительное пятно (13), инфракрасный радиометр (12), измеряющий радиационные температуры фона Тф и штрихов миры Тм, передаваемые в ПЭВМ типа «Notebook» (7) для усреднения и вычисления текущего значения разности радиационных температур ΔT=Тм-Тф, соответствующего определенному углу поворота пластины, устанавливаемому в механизме поворота миры. Угол поворота пластин устанавливает оператор с помощью механизма поворота (8) на каждом штриховом элементе ИК-миры.
Каждый штриховой элемент миры, согласно изобретению, содержит жесткую раму (3), с установленными в ней одинаковыми наборами экранирующих пластин (6) (узких прямоугольных полосок), имеющих соответственно минимальные и максимальные значения коэффициентов излучения. При первом крайнем положении, когда экранирующие пластины установлены параллельно подстилающей поверхности (фону), перекрывается без разрывов вся площадь рамы (3), в других положениях - механизм плавного поворота (8) пластин осуществляет синхронное вращение пластин на такой угол (до такого положения), при котором разность радиационных температур между пластинами и фоном становится равной заданному в эксперименте значению ΔT.
Пассивная штриховая инфракрасная мира с плавным регулированием функционирует следующим образом.
Для получения теплового контраста в диапазоне ΔT=2…10°C в облачную погоду, пластины поворачивают на угол от 0 до 180°, а при угле +90° все сечение рамы перекрывают пластины со стороной с минимальным коэффициентом излучения, а в ясную погоду, пластины поворачивают на угол 180 до 360°, при этом при угле +270°, все сечение рамы перекрывают пластины со стороной с максимальным коэффициентом излучения (см. фиг. 4 поз. 4a)…4д)).
Перед полетом с помощью инфракрасного радиометра (12) измеряют радиационную температуру фона и экранирующих пластин ИК-миры. Радиометр устанавливается на такой высоте над поверхностью рамы штрихового элемента (3), при которой размеры измерительного пятна (14) прибора позволяют измерять в нескольких точках значение радиационной температуры штриха миры и, затем, переставив радиометр, измеряют в нескольких точках значение радиационной температуры фона для вычисления их усредненных значений .
Изменение внешних условий функционирования миры (времени суток, облачности, ветра и т.п.) приводит к изменению значений теплового контраста и необходимости поворота пластин на другой угол поворота, соответствующий заданному значению разности радиационных температур.
В предлагаемом тест-объекте разность потоков излучения (тепловой контраст) между штрихами и фоном создается за счет теплового нагрева штрихов миры, фона и того и другого вместе. В случае, когда пластины расположены перпендикулярно поверхности, радиационная температура холодной полосы миры определяется, в основном, радиационной температурой подстилающей поверхности (фона), т.е. Tмиры = Tфона. При повороте пластин на угол +90°, когда пластины параллельны фону, радиационная температура определяются температурой дюралюминиевых пластин. При этом все сечение рамы будет перекрыто пластинами. В этом случае обеспечивается экранирование теплового потока от подстилающей поверхности, и температура штриха миры будет определяться радиационной температурой излучения поверхности пластин. В промежуточных положениях - одновременно обеими составляющими, причем, в зависимости от угла поворота пластин, преобладает либо собственное излучение фона, либо пластины.
При установке пластин с отполированной стороной, коэффициент излучения которых минимальный (ε<0,05), а при этом коэффициент отражения (α>0,97), поверхность пластины, как зеркало, отражает поток излучения верхних холодных слоев атмосферы Земли. В ясную погоду температура верхних слоев атмосферы в окнах прозрачности атмосферы составляет T=-50…-60°C, поэтому радиационная температура пластин будет составлять величину порядка T≅-30…-40°C.
В облачную погоду, отраженный от пластин тепловой поток определяется температурой нижней кромки облаков, что всегда на 5…10°C ниже температуры воздуха и земной поверхности (фона). При использовании отполированной поверхности пластин создается отрицательный температурный контраст относительно фона. При повороте пластины от +90 до 180° отраженная составляющая теплового потока от пластин уменьшается, открывается фоновая поверхность миры и Tмиры = Tфона (пластины стоят ребрами к поверхности).
Установка пластин на угол +270° - пластины опять параллельны подстилающей поверхности, все сечение рамы перекрыто пластинами, но при этом пластины имеют матированную поверхность с высоким коэффициентом излучения (ε>0,97), что обеспечивает радиационный контраст миры в диапазоне ΔT=2…10°C. Расширение динамического диапазона ΔT ИК-миры повышает точность выставки заданного значения ΔT приблизительно в 2 раза.
За счет высокого коэффициента поглощения пластины большего, чем у окружающих объектов и фона, под воздействием солнечного и небесного излучения температура пластин на 2…12°C становится выше окружающего фона. Создается положительный тепловой контраст. При повороте пластин эффективная (экранирующая) площадь пластин уменьшается, тепловой контраст понижается и становится равным «0°», т.е. Tфона = Tмиры.
При подготовке к летному эксперименту для ИК-миры в качестве подстилающей поверхности выбирается ровная площадка с однородным травяным покровом, грунтом, асфальтовым или бетонным покрытием. Часть секций миры располагается вдоль заданного направления полета самолета, а другая часть секций - поперек направления полета (см. фигуру 1). Для обеспечения измерений разрешающей способности авиационных инфракрасных сканирующих систем поступают следующим образом. С помощью инфракрасного радиометра, устанавливаемого так, чтобы исключить влияние внешнего фона, измеряют усредненное значение радиационной температуры фона и экранирующих пластин, которое передается в ноутбук для расчета текущего значения ΔТ. Полученная разность температур ΔТ соответствует определенному углу поворота экранирующих пластин, который устанавливается в механизме поворота миры. Затем с борта летательного аппарата выполняется тепловая аэросъемка местности с ИК-мирой. Выполняется послеполетный анализ полученных аэроснимков с изображениями миры и, при предварительной автоматизированной обработке, определяют заданные характеристики бортовой ИК-системы.
Предлагаемая конструкция пассивной штриховой ИК-миры обеспечивает установку и поддержание значения разности радиационных температур в течение эксперимента, при изменяющихся внешних условиях, при задании нового значения разности радиационных температур оператором. Это расширяет диапазон погодных условий проведения эксперимента, надежность и достоверность полученных результатов и сокращает временные и финансовые затраты на летные испытания авиационных ИК-систем дистанционного зондирования Земли.
название | год | авторы | номер документа |
---|---|---|---|
ПАССИВНАЯ ИНФРАКРАСНАЯ МИРА С СИСТЕМОЙ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ | 2008 |
|
RU2387969C1 |
ПАССИВНАЯ ИНФРАКРАСНАЯ МИРА | 1994 |
|
RU2105956C1 |
Способ контроля фонового уровня радиации вокруг АЭС | 2015 |
|
RU2615706C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ АВАРИЙНЫХ ВЫБРОСАХ НА АЭС | 2012 |
|
RU2497151C1 |
СПОСОБ АВТОМАТИЗИРОВАННОЙ ОЦЕНКИ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ АВИАЦИОННЫХ ОПТИКО- ЭЛЕКТРОННЫХ СИСТЕМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ В ВИДИМОМ И ИНФРАКРАСНОМ ДИАПАЗОНАХ ВОЛН И УНИВЕРСАЛЬНАЯ ПАССИВНАЯ МИРА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2005 |
|
RU2293960C9 |
Устройство для настройки и проверки работоспособности инфракрасной аппаратуры систем дистанционного наблюдения | 2024 |
|
RU2826442C1 |
СПОСОБ ОБНАРУЖЕНИЯ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ | 2000 |
|
RU2181495C1 |
СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЦИОННЫХ ТЕМПЕРАТУР ГЕОПОЛИГОННОГО ПАССИВНОГО ИК-ТЕСТ-ОБЪЕКТА | 1995 |
|
RU2112949C1 |
ОПТИЧЕСКОЕ УСТРОЙСТВО ТЕПЛОВИЗИОННОЙ СКАНИРУЮЩЕЙ СИСТЕМЫ | 2001 |
|
RU2239215C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ТРЕЩИН С ОТКРЫТОЙ ВОДОЙ В ЛЕДЯНОМ ПОКРОВЕ АКВАТОРИЙ | 2009 |
|
RU2404442C1 |
Изобретение относится к области фотометрии, и касается пассивной инфракрасной штриховой миры. Мира включает в себя штриховые элементы различных типоразмеров. Штриховые элементы выполнены в виде прямоугольных рам с установленными в них поворотными экранирующими пластинами. Экранирующие пластины выполнены с двухсторонним излучающим покрытием, имеющим максимальный и минимальный коэффициенты излучения. Оси вращения пластин установлены в отверстиях продольных стенок металлических рам. На внешней стороне продольной стенки рамы установлен механизм поворота пластин, обеспечивающий возможностью синхронного поворота каждой пластины вокруг своей оси на любой угол в диапазоне от 0° до 360° и фиксации их в этом положении. Технический результат заключается в расширении динамического диапазона, повышении точности и производительности измерений. 1 з.п. ф-лы. 5 ил.
1. Пассивная инфракрасная штриховая мира с плавно регулируемым тепловым контрастом, содержащая штриховые элементы различных типоразмеров, выполненные в виде прямоугольных рам с установленными в них поворотными экранирующими пластинами, инфракрасный радиометр, измеряющий значения радиационных температур подстилающей поверхности (фона) и пластин, связанный с ПЭВМ типа «Notebook» для усреднения измерений и вычисления текущего значения разности радиационных температур ΔT, соответствующего определенному углу поворота пластин, установленного оператором, отличающаяся тем, что экранирующие пластины выполнены с двухсторонними излучающими покрытиями, имеющими соответственно максимальный и минимальный коэффициенты излучения, оси вращения пластин установлены в отверстиях продольных стенок металлических рам штриховых элементов, дополнительно на внешней стороне продольной стенки рамы установлен механизм поворота пластин, включающий червячную передачу с ручкой привода, пару зубчатых колес червячной передачи и шестернями, находящимися в сцеплении друг с другом, установленными на осях вращения пластин, и выполнен с возможностью синхронного поворота каждой из шестерен и пластин вокруг своей оси на любой угол в диапазоне от 0 до 360° и фиксации их в этом положении, при этом для получения теплового контраста в диапазоне ΔТ=2…10°С в облачную погоду пластины поворачивают на угол от 0 до 180°, а при угле +90° пластины со стороной, выполненной с минимальным коэффициентом излучения, перекрывают все сечение рамы, а в ясную погоду пластины поворачивают на угол от 180° до 360°, при угле +270° пластины со стороной, выполненной с максимальным коэффициентом излучения, перекрывают все сечения рамы.
2. Пассивная штриховая инфракрасная мира с плавно регулируемым тепловым контрастом по п. 1, отличающаяся тем, что для расширения диапазона устанавливаемой разности радиационных температур миры и фона, повышения точности измерения используются обе стороны поворотной дюралюминиевой экранирующей пластины с разными излучающими покрытиями: одна из сторон - матированная и покрытая черной краской с максимальным коэффициентом излучения ε≅1,0, вторая сторона - отполированная с минимальным коэффициентом излучения ε≅0,01…0,05, при этом создается как положительный, так и отрицательный тепловой контраст миры относительно фона.
ПАССИВНАЯ ИНФРАКРАСНАЯ МИРА | 1994 |
|
RU2105956C1 |
СПОСОБ ОБРАЗОВАНИЯ В МЕТАЛЛАХ ТОНКИХ ОТВЕРСТИЙ | 1925 |
|
SU4605A1 |
ПАССИВНАЯ ИНФРАКРАСНАЯ МИРА С СИСТЕМОЙ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ | 2008 |
|
RU2387969C1 |
US 5097139 A1, 17.03.1992. |
Авторы
Даты
2016-12-27—Публикация
2015-10-30—Подача