ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА Российский патент 2017 года по МПК E02B8/06 

Описание патента на изобретение RU2609429C1

Изобретение относится к гидротехнике, а именно к гидротехническим сооружениям, предназначенным для гашения энергии нестационарных потоков.

Известны гасители энергии, в которых энергия потока понижается за счет увеличения потерь по длине напора. Это достигается либо установкой местных сопротивлений (например, дополнительное сопротивление в уравнительных резервуарах), либо за счет увеличения потерь по длине (например, в волноломах за счет разделения горизонтальными пластинами свободно набегающей волны на отдельные слои, которые движутся между пластинами).

Известен гаситель энергии потока, включающий цилиндрический водобойный колодец, делитель потока и два водовода, тангенциально соединенные с колодцем, плиты перекрытия выполнены криволинейными в вертикальной плоскости симметрии колодца, выпуклостью, направленной вверх (авторское свидетельство SU №1043246, E02B 8/06 от 23.09.1983).

Недостатком данной конструкции является то, что возвышающие криволинейные плиты находятся под воздействием пульсационных нагрузок потока. В результате снижается эксплуатационная надежность бетонных плит. Кроме того, после выходного отверстия вода имеет остаточное волнообразование по длине отводящего канала, следовательно, и местные скорости сохраняют высокие значения на большом расстоянии от гасителя, что приводит к размыву русла. Следует отметить, что отводящая часть канала вынуждена иметь более увеличенную (распластанную) ширину для растекания выходящего потока из отверстия при колебаниях уровней воды в канале. Таким образом, затягивается время переходного процесса на пути нестационарного турбулентного потока.

Известен также гаситель энергии потока, включающий цилиндрический водобойный колодец, делитель потока в два отвода, тангенциально соединенные с колодцем, плиты гасителя установлены на стойках с возможностью вертикального их перемещения и выполнены со стенками, расположенными по их периметру (авторское свидетельство SU №1059054, E02B 8/06 от 07.12.1983).

Недостатком известного гасителя является то, что оно усложнено конструкцией плит, связанных с пригрузочными емкостями, заполняемыми водой. При этом не исключается ударное воздействие на элементы крепления отводящего канала, и не способствует достаточному сглаживанию поверхности воды. Таким образом, эффективность гашения энергии потока в отводящем канале недостаточна. Кроме того, усложнение конструкции плит из-за железобетонных работ требует устойчивости их всплытия в вертикальном положении, ограниченных стойками плит, при этом их может заклинить при перемещениях в случаях перекосов, так как усилие равнодействующей гидростатического давления в колодце в разных точках происходит неравномерно по всей напорной плоскости плит.

Известен также гаситель энергии потока, включающий водовод, закручивающее устройство, которое разделяет поток на струи и отводящий канал (авторское свидетельство SU №1712530, E02B 8/06 от 15.02.1992).

Недостатком известного гасителя является то, что при закручивании потока устройствами на горизонтальных участках в гасительной камере возникает интенсивная пульсация скоростей и давлений, а также неполное гашение кинетической энергии потока в отводящем канале. Струи воды, вытекающие из колодца, направлены практически в одну сторону, следовательно, соударение их малоэффективно гасит энергию потока. При этом сопряжение бьефов производится по типу отогнанного прыжка, на котором рассчитывается участок крепления дна отводящего канала, что приводит к недопустимым размывам. Кроме того, наличие такого течения потока перед выходом из отверстия не снижает придонные скорости в отводящем канале и создает волновые поверхностные явления, что снижает гидравлические условия работы отводящего канала.

Известен гаситель энергии потока, преимущественно селевого, включающий расположенные на одной оси подводящее и отводящее русла и размещенную между ними обтекаемую преграду, установленную на дне и разделяющую подводящее русло на два одинаковых по ширине канала, ограниченных с внешней стороны боковыми бортами подводящего русла и направленных за преградой навстречу друг к другу, преграда выполнена в плане в виде трапеции с лобовой гранью, установленной с обратным уклоном навстречу потоку и сопрягающейся с дном водотока, причем отводящее русло выполнено с шириной, меньшей ширины подводящего русла (авторское свидетельство SU №1550033, E02B 8/06 от 15.03.1990).

Высокая случайно-вероятная однонаправленность соударяющихся потоков в отводящем канале, приводящая к суммированию кинетической энергии по центру между жесткими закрепленными к дну водобойными стенками, образует подъем воды вверх, что вызывает большие всплески и волнения за ними при расширении потока, размывание откосов канала, что снижает эффективность и надежность гашения водяного потока. Таким образом, эффективность гашения избыточной кинетической энергии потока в известном устройстве значительно снижена, при этом определяет жесткие требования к конструкции гасителя.

Известен вихревой гаситель энергии потока, включающий горизонтальный участок водовода, установленные в конце его и расположенные по периметру носки-трамплины, и расширение водовода, расширение водовода выполнено в виде кольцевой камеры гашения, а носки-трамплины расположены симметрично относительно вертикальной оси выходного сечения водовода так, что нижний носок-трамплин расположен диаметрально противоположено свободному промежутку между боковыми носками-трамплинами (авторское свидетельство SU №1030474, E02B 8/06 от 23.07.1983).

Недостатки известного устройства:

взаимодействие струй и потоков в пределах кольцевой камеры способствует концентрации расхода на узком фронте, в результате местные скорости сохраняют высокие значения, что приводит к размыву дна от гасителя;

сложность его конструкции и эксплуатации из-за наличия изменения струй трамплинами, при этом отсутствуют условия гашения энергии при изменении расходов и колебаниях уровней в камере, т.е. не изменяется живое сечение камеры гашения;

гидродинамическая нагрузка увеличивается, а следовательно, эффект закручивания недостаточен;

работа гасителя эффективна при пропуске оптимального расхода, если расход выше или ниже оптимального, эффективность и надежность понижается, так как носки-трамплины неподвижно закреплены;

успокоители носки-трамплины, хотя и создают циркуляцию потока, однако они ограничивают радиальное движение в камере со стенками, а это не делает камеру экономичнее, так как необходимо делать камеру достаточно глубокой;

высокая случайно-вероятностная однонаправленность закручиваемости потоков, приводящая к суммированию кинетической энергии образовавшихся вихрей, что снижает эффективность и надежность гашения водяного потока;

выходной участок водовода, расположенный при расщеплении потока на выходе в кольцевую камеру, обладает низкой эффективностью гашения энергии волнового потока.

Следует отметить, что под нестационарным понимается поток жидкости, в котором расход (скорость) изменяется во времени. К нестационарным течениям относятся широко встречаемые в технике переходные процессы, при котором расход меняется от одного до другого установившегося движения. В частном случае расход меняется от нуля до установившегося максимального значения, отводимого в отводящий водовод.

Таким образом, если имеет место накопление энергии в колодце в виде турбулентного перемешивания жидкости, то происходит нестационарный период переходного процесса. Этот процесс образования движения нестационарности может отрицательно сказываться на отсутствии сглаживания волны потока в отводящем водоводе (канале).

Технической задачей, на решение которой направлено изобретение, - повышение эффективности и надежности процесса гашения кинетической энергии разделенного потока за счет последующего соединения закручиваемых во взаимно противоположных направлениях его частей в условиях переменного уровня воды в камере.

Технический результат достигается тем, что гаситель энергии водного потока, включающий горизонтальный подводящий участок водовода, кольцевую камеру гашения, снабжен дополнительными установленными на входе консольно расширяющимся насадком, а на выходе консольно сужающимся насадком, установленными большими основаниями навстречу друг к другу в кольцевой камере, которая выполнена в форме тора, образованного входной и выходной камерой, при этом насадки соединены соответственно с помощью поводящего и отводящего трубопроводов для подвода и отвода воды, последний снабжен местным сопротивлением в виде завихрителя потока, производящего дополнительное гашение нестационарного потока.

Кроме того, подводящий участок трубопровода выполнен в виде конфузора, а завихритель потока расположен в горизонтальном отводящем участке трубопровода выполненного в виде диффузора.

Автору не известны устройства, содержащие аналогичную взаимосвязь при решении задачи повышение эффективности и надежности процесса гашения кинетической энергии потока, выходящего из камеры в отводящий водовод (канал).

На чертеже представлена схема разреза гасителя энергии водного потока.

Гаситель энергии водного потока включает подводящий водовод 1, напорный участок трубопровода 2, выполненный в виде конфузора. Трубопровод 2 подключен к выходному консольно расширяющемуся насадку 3, встроенному в герметичный корпус в виде камеры 4 разделения и смешения потоков с плитой - перекрытия 5. Выходная часть камеры 4 соединена с дополнительным встроенным сопротивлением с входной расширяющей частью консольно сужающегося к выходу насадка 6, и сужающаяся часть его подключена к напорному трубопроводу 7 в виде диффузора с завихрителем потока 8, который соединен с отводящим водоводом 9.

Гаситель энергии водного потока работает следующим образом.

Поток воды, поступающий из подводящего водовода 1, далее поступает в напорный трубопровод 2, сжатый поток направляется в консольно расширяющий насадок 3. В камере 4 происходит разделение потока за счет дополнительного встроенного сопротивления консольно сужающего насадка 6 и полуторовой полости корпуса камеры 4. Часть потока воды, поступившая в камеру под насадками 3 и 6, приобретает кольцевое движение, при котором частично гасится кинетическая энергия, а часть потока воды, встречая на своем пути также преграду в виде выступающей части сужающего насадка 6, получает сопротивление насадка, образует гидравлический удар, имеющий возможность увеличить встречное давление на выход воды в сторону напорного трубопровода 7 в виде диффузора с завихрителем потока 8. Происходит торможение и смешение потоков воды, выходящей из полуторовой полости корпуса камеры 4. Благодаря центральному удару при встрече струй возникающий гидравлический удар распространяется в сторону сужающей части насадка 5 и имеет некоторый остаточный волновой характер с максимальной амплитудой давления для указанного потока, образовавшегося вследствие снижения статического напора из насадка 6. Для исключения возникшей при этом дополнительной кинетической энергии в выходной части диффузора 7 установлен завихритель потока 8, смещающий волновое движение в центральную зону на выходе из диффузора в сторону отводящего водовода 9. Следует уточнить, что для эффективного воздействия поступающего потока из консольно расширяющего насадка 3 в камеру 4 разделение и смешение увлекается во вращательное движение в герметичной полуторовой полости корпуса камеры 4, частично закрытой в средней части ее консольными насадками 3 и 6, т.е. часть потока воды, поступившая в камеру гашения, приобретает кольцевое движение навстречу друг к другу в полуторовой полости корпуса камеры 4. Смешение, соударение всех частей кольцевой струи по всему периметру, ее турбулизация, распространение потока по площади сечения перед расширяющейся входной частью насадка 6, последующее сжатие происходит в концевой сужающей части насадка 6, соединенного с диффузором 7 с завихрителем потока 8.

Разрежение и сжатие жидкости в указанных зонах обуславливается свойством конструкции тора, связанного с размещением в нем консольных насадков 3 и 6. В диффузоре скорость потоков выравнивается и поступает в отводящий водовод. Таким образом, гашение кинетической энергии потока и уменьшение дальнейшей его скорости определяется выбранной формой полуторовой полости корпуса камеры относительно ее оси, т.е. расположением между расширяющейся входом части насадка и соосно установленному относительно расширяющейся части с переходом в сужающуюся часть выходного насадка в зоне расположения камеры гашения, при этом выходной сужающий насадок соединен с началом диффузора в узкой его части входа.

Оригинальность предлагаемого изобретения заключается в том, что повышение эффективности гашения кинетической энергии и образование в нем вихрей нестационарности достигается движения по насадкам, размещенных консольно на расстоянии друг от друга и соосно в камере полутора с последующим контактом с завихрителем потока в диффузоре соединяющего потока, скорость которого выравнивается в данном трубопроводе при сопряжении с отводящим водоводом. Устройство компактно (простота конструкции, отсутствие подвижных частей) и уменьшает возможность образования локальных размывов дна отводящего водовода.

Похожие патенты RU2609429C1

название год авторы номер документа
ГАСИТЕЛЬ ЭНЕРГИИ ПОТОКА 2016
  • Голубенко Михаил Иванович
RU2609243C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2013
  • Голубенко Михаил Иванович
RU2523530C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2015
  • Голубенко Михаил Иванович
RU2591967C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2013
  • Голубенко Михаил Иванович
RU2530526C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2015
  • Голубенко Михаил Иванович
RU2609390C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2022
  • Голубенко Михаил Иванович
RU2815140C2
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2019
  • Голубенко Вадим Михайлович
RU2708523C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2020
  • Голубенко Михаил Иванович
RU2737967C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2016
  • Голубенко Михаил Иванович
RU2625174C1
ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2020
  • Голубенко Михаил Иванович
RU2724447C1

Иллюстрации к изобретению RU 2 609 429 C1

Реферат патента 2017 года ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА

Изобретение относится к гидротехнике, а именно к гидротехническим сооружениям, предназначенным для гашения энергии нестационарных потоков. Гаситель энергии водного потока включает подводящий водовод 1, напорный участок трубопровода 2, отводящий трубопровод 7, снабженный завихрителем потока 8. Подводящий трубопровод 2 выполнен в виде конфузора и подключен к выходному участку с консольно расширяющимся насадком 3, встроенным в герметичный корпус камеры 4, которая выполнена в форме тора. Выходная камера 4 соединена с дополнительным встроенным сопротивлением с входной расширяющей частью, консольно сужающейся к выходу насадка 6, подключенного к напорному трубопроводу 7 в виде диффузора с завихрителем потока 8 в сторону отводящего водовода 9. Разряжение и сжатие жидкости в камере 4, связанной с консольными насадками 3, 6 обуславливается работой конструкции полуторовой полости корпуса камеры 4. Таким образом, гашение кинетической энергии потока и уменьшение дальнейшей его скорости определяется выбранной формой камеры относительно ее оси - достигается повышение эффективности работы в условиях переменного уровня воды в камере гашения и надежности гашения кинетической энергии разделяемого и вновь соединяемого потока, исключается необходимость устройства колодца в нижнем бьефе канала. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 609 429 C1

1. Гаситель энергии водного потока, включающий горизонтальный подводящий участок водовода, кольцевую камеру гашения, отличающийся тем, что он снабжен дополнительным на входе консольно расширяющимся насадком, а на выходе консольно сужающимся насадком, установленными большими основаниями навстречу друг другу в кольцевой камере, которая выполнена в форме тора, образованного входной и выходной камерой, при этом насадки соединены соответственно с помощью подводящего и отводящего трубопроводов для подвода и отвода воды, последний снабжен местным сопротивлением в виде завихрителя потока, производящего дополнительное гашение нестационарного потока.

2. Гаситель по п.1, отличающийся тем, что подводящий участок трубопровода выполнен в виде конфузора, а завихритель потока расположен в горизонтальном отводящем участке трубопровода, выполненного в виде диффузора.

Документы, цитированные в отчете о поиске Патент 2017 года RU2609429C1

Вихревой гаситель энергии потока 1982
  • Докин Виктор Асафович
SU1030474A1
Гаситель энергии потока 1991
  • Ламердонов Замир Галимович
  • Степанов Павел Михайлович
  • Хужоков Каральчу Суфадинович
  • Толмазов Валентин Васильевич
SU1798426A1
0
SU271381A1
Гаситель энергии потока 1989
  • Ламердонов Замир Галимович
  • Кольченко Олег Леонидович
SU1712530A1
CN102900053 A, 30.01.2013.

RU 2 609 429 C1

Авторы

Голубенко Михаил Иванович

Даты

2017-02-01Публикация

2015-11-20Подача