Гидроакустический волоконно-оптический датчик давления Российский патент 2017 года по МПК G01L11/00 

Описание патента на изобретение RU2610224C1

Изобретение относится к области волоконной оптики и может быть использовано при разработке датчиков физических величин на основе кольцевого волоконно-оптического интерференционного чувствительного элемента.

Ближайшим аналогом, принятым за прототип, является катушка для оптического волокна по патенту США №5071082.

Рассмотренная в прототипе катушка для оптического волокна состоит из волоконного световода, намотанного на каркас, выполненного в виде цилиндрической оболочки с фланцами по торцам и с секторообразными цилиндрическими выемками в теле цилиндрической оболочки, расположенными вдоль по ее образующей и выступающими за пределы ее наружной поверхности. При этом витки световода между цилиндрическими выемками сопрягаются с наружной поверхностью цилиндрической оболочки каркаса, а в местах выемок образуют над ними изгибы, обеспечивающие возможность радиальных перемещений витков. Такой способ изготовления предусматривает возможность изгиба и плавного разворота волокна в противоположном направлении с целью укладки витков на нижний слой по винтовой впадине, образованной смежными витками волокна, а также позволяет минимизировать потери оптической мощности в многорядном кольцевом чувствительном элементе.

Одним из недостатков данного решения, применительно к его использованию в гидроакустических антеннах, является необходимость использования секторообразных цилиндрических выемок в теле цилиндрической оболочки, расположенных вдоль по ее образующей и выступающих за пределы ее наружной поверхности. Это связано с тем, что диаметр секторообразных цилиндрических выемок и, соответственно, диаметр цилиндрической поверхности сменных вставок, формирующих изгиб световода, не может быть меньше минимально допустимого диаметра изгиба световода (обычно это составляет 30 мм). При меньших диаметрах изгиба имеют место большие потери оптической мощности в световоде. Поэтому по мере уменьшения диаметра катушки величина остающихся в теле оболочки цилиндрических секторов становится все меньше, а при величине диаметра катушек, сравнимой с допустимым диаметром изгиба световодов, реализация данного технического решения становится невозможной. Необходимость изготовления малогабаритных катушек обусловлена созданием чувствительных элементов, диаметры и длины которых ограничены опасностью возникновения конструктивных резонансов в рабочей полосе частот. С другой стороны, обеспечение требований по чувствительности датчиков к минимальному звуковому давлению, а также к их прочности при воздействии внешнего гидростатического, превышающего минимальное давления (например, в 106 раз) обязывает создавать кольцевой чувствительный элемент, количество слоев которого способно обеспечить цилиндрическую жесткость конструкции. В этом случае каркас должен выполнять технологические функции, иметь минимальную цилиндрическую жесткость, небольшие размеры и не содержать конструктивных элементов, используемых в прототипе.

Основной задачей изобретения является разработка кольцевого чувствительного элемента, образованного путем многослойной намотки оптического волокна по спирали с возможностью склеивания витков и слоев волокна в единую колебательную систему, отличающуюся чувствительностью к звуковому давлению в диапазоне рабочих частот, а также низкими потерями оптической мощности при воздействии внешнего гидростатического давления.

Поставленная задача решается путем многослойной намотки оптического волокна на каркас, выполненный в виде тонкостенной цилиндрической оболочки с фланцами по торцам. На каждый предыдущий слой оптического волокна чувствительного элемента наносят клей быстрого отверждения, производящий склейку витков волокна между собой, заполняющий и выравнивающий межвитковые промежутки до образования гладкой и жесткой цилиндрической поверхности, на которую по винтовой линии наматывают последующий слой волокна со встречными направлениями витков, на который также наносят клей быстрого отверждения, производящий склейку витков волокна между собой, заполняющий и выравнивающий межвитковые промежутки.

Намотка каждого последующего слоя волокна на жесткую цилиндрическую поверхность предыдущего слоя, выровненную клеем, снижает возможность возникновения микроизгибов оптического волокна.

Технический результат настоящего изобретения заключается в решениях следующих основных задач, обеспечивающих работоспособность гидроакустических кольцевых волоконно-оптических датчиков давления в составе гидроакустических антенн (далее - датчики):

- создание многослойного кольца из оптического волокна, способного выдерживать без разрушения внешнее гидростатическое давление;

- создание колебательной механической системы в виде тонкостенного кольца, чувствительной к воздействию звукового давления в широкой полосе частот;

- снижение потерь оптической мощности в волоконно-оптическом кольце в условиях повышенных гидростатических давлений позволяет объединить датчики в многоэлементную антенну. Выходы отдельных датчиков мультиплексируются в волоконной системе телеметрии.

На фиг. 1 изображена конструкция гидроакустического кольцевого волоконно-оптического датчика давления, на фиг. 2 - чувствительный элемент датчика. На фиг. 1 и 2 приняты следующие обозначения:

1 - кольцевой чувствительный элемент (ЧЭ);

2 - металлические фланцы;

3 - прорезиненные втулки;

4 - шпилька;

5 - гайки;

6 - тонкостенная цилиндрическая оболочка (далее - оболочка);

7 - воздушная полость датчика (далее - воздушная полость).

Устройство работает следующим образом.

Под действием акустического давления ЧЭ 1 датчика деформируется, что вызывает изменение разности фаз интерферирующих импульсов. Эта разность фаз преобразуется фотоприемным устройством (ФПУ) в изменение величины тока. ФПУ не входит в состав заявляемого устройства и является средством регистрации оптических импульсов, возникающих на выходе датчика под действием внешнего акустического давления. Таким образом, обрабатывая сигнал с ФПУ, можно судить о характере акустического воздействия.

Основным механизмом модуляции фазовой задержки интерференционных импульсов оптического волокна является продольное удлинение вследствие изменения диаметра ЧЭ 1 датчика, вызванного деформацией каркаса от внешнего воздействия. Конструкция датчика представляет собой склеенные между собой клеем быстрого отверждения, заполняющего и выравнивающего межвитковые промежутки, витки оптического волокна, намотанные на каркас, выполненный в виде тонкостенной цилиндрической оболочки 6 с воздушной полостью 7, фланцами по торцам 2 и прорезиненными втулками 3. За счет гибкости цилиндрической оболочки 6 и воздушной полости 7 при внешних механических воздействиях на оптическое волокно боковая стенка цилиндрической оболочки 6 может прогибаться или выгибаться. В этом случае сохраняются достоинства конфигурации ЧЭ 1, но добавляется действие тонкостенной цилиндрической оболочки 6 как механического преобразователя. Погружение датчика в воду связано с приложением к нему большого гидростатического давления. При такой деформации препятствием проникновению влаги в воздушную полость 7 являются прорезиненные втулки 3, стянутые плотно прилегающими металлическими фланцами 2 и двумя гайками 5 со шпилькой 4, тем самым обеспечивая целостность замкнутого колебательного контура. Данная конструкция датчика обеспечивает максимально эффективное преобразование внешнего воздействия в сдвиг фазовой задержки.

Механическая прочность кольцевого ЧЭ определяется его устойчивостью к воздействию внешнего гидростатического давления в виде величины критического давления Ркр, которое определяется по формуле (1) (Справочник металлиста в пяти томах. Том 2 // Под редакцией канд. техн. наук. С.А. Чернавского, Государственное научно-техническое издательство машиностроительной литературы, Москва, 1958, с. 177):

где Е - модуль упругости оптического волокна, μ - коэффициент Пуассона композиции, h - толщина кольца, R - средний радиус кольца. В результате исследований упругих характеристик оптического волокна SMF-28, определены его модуль упругости, который равен 0,17⋅1011 Па и коэффициент Пуассона, равный 0,26.

Так, например, ЧЭ, изготовленный из оптического волокна SMF-28 длиной 80 м, образованный в результате многослойной намотки (7 слоев) на каркас диаметром 35 мм, длиной 29 мм, толщиной 2,1 мм, с использованием разделительных полимерных клеев на акриловой основе с модулем упругости порядка 30⋅106 Па, способен выдерживать внешнее гидростатическое давление величиной 6,1 МПа. При этом слои оптического волокна работают на сжатие, что позволяет обеспечить долговечность их использования.

Оценка чувствительности рассматриваемого датчика сводится к определению удлинения оптического волокна под действием внешнего звукового давления величиной в 1 Па.

Известно соотношение, по которому 1 мкм деформации оптического волокна плеча ЧЭ равен фазовому изменению dϕ в 4,9 радиан (Волоконно-оптические датчики // Под редакцией Э. Удда, М.: Техносфера, 2008, с. 314):

где dϕ - разность фаз, k - волновое число, ξ - поправочный оптический коэффициент деформации, n - коэффициент преломления, dL - деформация оптического волокна.

Так, например, для рассмотренного выше кольцевого ЧЭ деформация ΔL оптического волокна длиной 80 м при воздействии внешнего звукового давления величиной в 1 Па составит:

Фазовое изменение под воздействием давления в 1 Па, с учетом соотношения (2), составит 0,21 рад/Па, что соответствует чувствительности волоконно-оптического датчика давления, способного эксплуатироваться при гидростатическом давлении до 6 МПа.

Для рассмотренного выше волоконно-оптического датчика необходимо, чтобы частота собственных колебаний металлического корпуса превышала верхнее значение частотного диапазона рабочей частоты датчика давления. Частота собственных колебаний fcp. корпуса датчика рассчитывается согласно формуле (3) (Расчет и проектирование гидроакустических рыболовно-поисковых станций, Орлов Л.В., Шабров А.А., изд. «Пищевая промышленность», Москва, 1974, с. 185):

где с - скорость звука в металлическом корпусе (сплав АМг6) датчика давления [м/с], где G - модуль сдвига [ГПа], ρ - плотность материала [г/см3], rср. - средний радиус корпуса датчика давления [м].

Так, например, приняв средний радиус корпуса датчика равным 0,034 м, частота собственных колебаний корпуса датчика составит:

Таким образом, предлагаемая конструкция гидроакустического кольцевого волоконно-оптического датчика давления позволяет минимизировать микроизгибы световода и создать малогабаритные датчики давления в промышленных условиях, способные за счет многослойной намотки оптического волокна выдерживать высокие гидростатические давления и обеспечивать чувствительность к звуковому давлению в широкой полосе частот. Эффективность и реализуемость предложенного технического решения подтверждается его реализацией в элементах гидроакустических антенн, изготавливаемых предприятием.

Подтверждением достигнутого технического результата являются проведенные испытания разработанных волоконно-оптических датчиков давления на воздействие гидростатического давления, частотных характеристик чувствительности, изменения потерь оптической мощности в волоконно-оптическом кольце в условиях повышенных гидростатических давлений.

Похожие патенты RU2610224C1

название год авторы номер документа
АКУСТИЧЕСКАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ АНТЕННА 2002
  • Акопов Л.И.
  • Бегиашвили Георгий Андреевич
  • Бегиашвили Андрей Георгиевич
  • Гватуа Шалико Шилович
RU2234105C2
Чувствительный элемент волоконно-оптического гироскопа 2023
  • Безмен Владимир Сергеевич
  • Евстифеев Михаил Илларионович
  • Егоров Дмитрий Александрович
  • Новиков Роман Леонидович
  • Унтилов Александр Алексеевич
  • Чапурский Алексей Петрович
RU2807020C1
СПОСОБ ПОЛУЧЕНИЯ УПРУГОГО И ЗВУКОПОГЛОЩАЮЩЕГО ПОЛИМЕРНОГО МАТЕРИАЛА С ТЕРМОПЛАСТИЧНЫМИ МИКРОСФЕРАМИ 2013
  • Машошин Андрей Иванович
  • Батанов Андрей Константинович
  • Бродский Борис Моисеевич
  • Батанов Кирилл Андреевич
  • Куц Дарья Алексеевна
RU2534240C1
ОПТИКО-ВОЛОКОННЫЙ ТЕРМОАНЕМОМЕТР 1993
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
RU2060504C1
КАТУШКА ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА 2008
  • Пономарев Владимир Григорьевич
  • Прилуцкий Виктор Евстафьевич
  • Бакшева Ольга Владимировна
  • Коркишко Юрий Николаевич
  • Федоров Вячеслав Александрович
RU2367908C1
Комбинированный волоконно-оптический датчик 2022
  • Огрызко Яна Андреевна
  • Скляров Филипп Владимирович
RU2786357C1
ДВУХКОЛЬЦЕВОЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ГИДРОФОН 1994
  • Власов Ю.Н.
  • Маслов В.К.
  • Сильвестров С.В.
  • Толстоухов А.Д.
RU2106072C1
ЧУВСТВИТЕЛЬНАЯ КАТУШКА ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА 2020
  • Курбатов Александр Михайлович
  • Курбатов Роман Александрович
RU2749495C1
СПОСОБ СТЫКОВКИ ИНТЕГРАЛЬНО-ОПТИЧЕСКОЙ СХЕМЫ ДЛЯ ВОЛОКОННО-ОПТИЧЕСКОГО ГИРОСКОПА С ОДНОМОДОВЫМИ СВЕТОВОДАМИ (ВАРИАНТЫ) 2004
  • Андреев Алексей Гурьевич
  • Ермаков Владимир Сергеевич
  • Курбатов Александр Михайлович
RU2280882C2
Способ измерения гидростатического давления и волоконно-оптический датчик гидростатического давления 2023
  • Мешковский Игорь Касьянович
  • Стригалев Владимир Евгеньевич
  • Калугин Евгений Эдуардович
  • Киселев Сергей Степанович
  • Мухтубаев Азамат Булатович
RU2811364C1

Иллюстрации к изобретению RU 2 610 224 C1

Реферат патента 2017 года Гидроакустический волоконно-оптический датчик давления

Изобретение относится к области волоконной оптики и может быть использовано при разработке датчиков физических величин на основе кольцевого волоконно-оптического интерференционного чувствительного элемента. Заявленный гидроакустический волоконно-оптический датчик давления содержит каркас с воздушной полостью, образованной шпилькой, двумя фланцами и кольцевым многослойным волоконно-оптическим чувствительным элементом, при этом каждый предыдущий слой оптического волокна ЧЭ содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков до образования гладкой и жесткой цилиндрической поверхности, а каждый последующий слой оптического волокна со встречными направлениями витков также содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков. Технический результат заключается в разработке кольцевого чувствительного элемента, образованного путем многослойной намотки оптического волокна по спирали с возможностью склеивания витков и слоев волокна в единую колебательную систему, отличающуюся чувствительностью к звуковому давлению в диапазоне рабочих частот, а также низкими потерями оптической мощности при воздействии внешнего гидростатического давления, а также в обеспечении работоспособности гидроакустических кольцевых волоконно-оптических датчиков давления в составе гидроакустических антенн посредством создания многослойного кольца из оптического волокна, способного выдерживать без разрушения внешнее гидростатическое давление; создания колебательной механической системы в виде тонкостенного кольца, чувствительной к воздействию звукового давления в широкой полосе частот; снижения потерь оптической мощности в волоконно-оптическом кольце в условиях повышенных гидростатических давлений, что позволяет объединить датчики в многоэлементную антенну. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 610 224 C1

1. Гидроакустический волоконно-оптический датчик давления, содержащий каркас с воздушной полостью, образованной шпилькой, двумя фланцами и кольцевым многослойным волоконно-оптическим чувствительным элементом, отличающийся тем, что каждый предыдущий слой оптического волокна ЧЭ содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков до образования гладкой и жесткой цилиндрической поверхности, а каждый последующий слой оптического волокна со встречными направлениями витков также содержит слой клея быстрого отверждения, выполняющий склейку витков волокна между собой, обеспечивающий заполнение и выравнивание межвитковых промежутков.

2. Гидроакустический волоконно-оптический датчик давления по п. 1, отличающийся тем, что металлическое основание многослойного кольцевого ЧЭ выполнено со средним радиусом, обеспечивающим частоту собственных колебаний, превышающую верхнее значение частотного диапазона рабочей частоты.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610224C1

US 5071082 A, 10.12.1991
EA 201070644 A1, 30.12.2010
ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ 2005
RU2308689C2
Датчик давления 1988
  • Явелов Игорь Самуилович
SU1631329A1
US 1869408 A1, 02.08.1932.

RU 2 610 224 C1

Авторы

Батанов Андрей Константинович

Батанов Кирилл Андреевич

Бродский Борис Моисеевич

Гаринков Александр Викторович

Кузьмин Александр Андреевич

Даты

2017-02-08Публикация

2015-10-07Подача