Изобретение относится к бытовым приборам учета расхода газа и паров сжиженного газа, используемых для бытовых целей. Прибор может быть использован для работы в составе автоматизированных систем коммерческого учета газа на различных объектах коммунального хозяйства.
Известен счетчик расхода газа СГБМ-1.6, предназначенный для измерения объема газа при учете его потребления индивидуальными потребителями и содержащий датчик расхода, находящегося в герметичном корпусе и включающего в себя струйный блок и пневмоэлектропреобразователь, электронный блок, производящий усиление и формирование импульсного счета. Он включает в себя также отсчетное устройство, батарею для питания электронного блока, кожух, который закрывает вышеперечисленные элементы, основание в виде тройника для установки на газопровод.
Недостатком является небольшой срок эксплуатации вследствие ограниченной емкости элемента питания.
Наиболее близким техническим решением является устройство для измерения расхода газа, содержащее основание с входным и выходным патрубками, на котором смонтирован герметичный корпус с установленными внутри него температурным датчиком, датчиком расхода газа, включающим пневмоэлектропреобразователь и струйный автогенератор, построенный по многоконтурной системе замкнутых камер, соединенных каналами с низким пневматическим сопротивлением, а также электронный блок, содержащий микропотребляющий усилитель напряжения переменного тока с пьезоэлемента пневмоэлектропреобразователя с фильтрующими цепями и цепью стабилизации тока, микропотребляющий микроконтроллер, управляющий индикацией накопленного объема газа с периодическим сохранением данных в энергонезависимую память, жидкокристаллический индикатор, элемент питания (патент RU 2476829).
Недостатками указанных устройств является наличие помех, которые влияют на точность измерения и искажают результаты измерения в процессе их эксплуатации, а также небольшой срок эксплуатации.
Задачей технического решения является увеличение срока эксплуатации устройства и расширение функциональных возможностей.
Техническим результатом предложенного устройства является защита электронного блока от мгновенных импульсных помех (перенапряжения) за счет перераспределения энергии датчика расхода газа, с одновременным уменьшением емкости применяемой батареи и увеличением срока ее эксплуатации, а также расширение сервисных возможностей.
Поставленная задача достигается тем, что в устройстве для измерения расхода газа, содержащем основание с входным и выходным патрубками, на котором смонтирован герметичный корпус с установленными внутри него температурным датчиком, датчиком расхода газа, включающим пневмоэлектропреобразователь и струйный автогенератор, построенный по многоконтурной системе замкнутых камер, соединенных каналами с низким пневматическим сопротивлением, а также электронный блок, содержащий микропотребляющий усилитель напряжения переменного тока с пьезоэлемента пневмоэлектропреобразователя с фильтрующими цепями и цепью стабилизации тока, микропотребляющий микроконтроллер, управляющий индикацией накопленного объема газа с периодическим сохранением данных в энергонезависимую память, жидко-кристаллический индикатор, элемент питания, согласно изобретению электронный блок снабжен компаратором, обеспечивающим автоматическое определение уровня превышения сигнала датчика расхода газа и соединенного с формирователем уровня тока, обеспечивающего уменьшение уровня входного сигнала на входе микропотребляющего усилителя напряжения переменного тока и соединенного с микропотребляющим микроконтроллером для его дополнительного питания, при этом электронный блок дополнительно снабжен инфракрасным импульсным излучателем, обеспечивающим подключение к персональному компьютеру, или дополнительно снабжен сетевым интерфейсом для интегрирования в автоматизированную систему коммерческого учета потребления газа.
Компаратор предназначен для автоматического определения уровня превышения сигнала датчика расхода газа и соединен с формирователем уровня тока. Формирователь уровня тока отбирает избыточную энергию на входе микропотребляющего усилителя, тем самым уменьшает уровень входного сигнала. Выделенную превышающую часть энергии формирователь уровня тока направляет на питание микроконтроллера, соединенного с микропотребляющим усилителем, и на элемент питания (батарея).
В результате такого перераспределения энергии происходит оптимизация работы входного микропотребляющего усилителя, что защищает электронную схему от мгновенных импульсных помех (статическое электричество, наведенные промышленные и природные помехи).
Наличие дополнительной энергии также позволяет расширить сервисные возможности газового счетчика и ввести сетевой интерфейс для интегрирования в автоматизированную систему коммерческого учета потребления газа (RS485 или CAN). Выбор интерфейса будет определять интегрированная среда сбора информации с приборов учета (электросчетчики, водосчетчики и т.д.). Для больших расстояний (до 1200 м со скоростью 9600 бит/с) для сбора информации применяется RS485. Для расстояний до 100 м целесообразно применять CAN интерфейс для интегрирования газовых счетчиков автоматизированную систему контроля, сбора информации и управления.
Инфракрасный импульсный излучатель позволяет подключить устройство к персональному компьютеру для сохранения и дальнейшей обработки информации о потреблении газа.
Заявляемое устройство поясняется чертежами: фиг. 1 и 2.
Счетчик газа содержит основание 1 с входным патрубком 2 и выходным патрубком 3. На основании 1 смонтирован герметичный корпус 4, в котором расположены температурный датчик 5 и датчик 6 расхода газа. Датчик 6 расхода газа включает пневмоэлектропреобразователь 7 и струйный автогенератор 8 и электронный блок 9. Струйный автогенератор 8 построен по многоконтурной системе замкнутых камер, соединенных каналами с низким пневматическим сопротивлением. Электронный блок 9 содержит микропотребляющий усилитель 10 напряжения переменного тока с пневмоэлектропреобразователя 7 с фильтрующими цепями и цепью стабилизации тока. Электронный блок 9 содержит микропотребляющий микроконтроллер 11, жидкокристаллический индикатор 12, элемент питания 13 и компаратор 14. Компаратор 14 соединен с формирователем уровня тока 15, обеспечивающего уменьшение уровня входного сигнала на входе микропотребляющего усилителя 10 напряжения переменного тока. Формирователь уровня тока 15 соединен с микропотребляющим микроконтроллером 11 для его дополнительного питания и инфракрасным импульсным излучателем 16 или сетевым интерфейсом 17. Счетчик газа содержит также пьезоэлемент 18, находящийся в пневмоэлектропреобразователе 7, и разъем 19 для подсоединения счетчика к компьютеру установки калибровки и поверки счетчиков газа.
Устройство работает следующим образом.
Принцип действия заявляемого устройства для измерения расхода газа основан на линейной зависимости частоты колебаний струи в струйном автогенераторе от расхода газа, прошедшего через этот генератор. Газ через входной патрубок 2 основания 1 поступает в струйный автогенератор 8 датчика расхода газа 6, установленный в герметичном корпусе 4, и выходит через выходной патрубок 3. Принцип работы струйного автогенератора 8 основан на работе многокаскадного струйного элемента, каждый каскад которого состоит из струйного дискретного элемента. Работа струйного дискретного элемента основана на возникновении пульсации струи в системе каналов в результате эффекта Коанда и эффекта внутренней обратной связи, пропорциональной расходу газа. Пульсации струи воспринимаются пневмоэлектропреобразователем 7 датчика расхода газа 6, соединенным каналами со струйным автогенератором 8. В результате пульсаций струйного автогенератора 8 в замкнутых камерах пневмоэлектропреобразователя 7 возникает перепад давления, который в свою очередь приводит к микродеформации пьезоэлемента 18 пневмоэлектропреобразователя 7. Из-за деформации пьезоэлемента 18 на его выводах возникает переменное напряжение с частотой, пропорциональной расходу газа. Переменное напряжение с выводов пьезоэлемента 18 подают на микропотребляющий усилитель 10 напряжения переменного тока, расположенный в электронном блоке 9. При расчетах расхода газа в электронном блоке 9 учитывают показания датчика температуры 5, установленного в корпусе 4.
Информация о накопленном расходе газа передается на сетевой интерфейс 17, а информация о текущем литровом расходе газа передается на инфракрасный импульсный излучатель 16.
Микропотребляющий микроконтроллер 11 управляет индикацией накопленного объема газа и периодически сохраняет данные в энергонезависимой памяти микроконтроллера 11. Компаратор 14 обеспечивает автоматическое определение уровня превышения сигнала датчика расхода газа 6.
Усиленный сигнал преобразуют в прямоугольные импульсы, которые и подаются на вход микроконтроллера 11 для выполнения расчетов вычисления расхода газа с учетом корректирующих коэффициентов и параметров давления и температуры с датчика температуры 5.
Корректирующие коэффициенты и дополнительные параметры сохраняются в энергонезависимой памяти микроконтроллера 11 с помощью внешних аппаратно-программных средств через разъем 19. Уровень сигнала на входе микропотребляющего усилителя 10 автоматически поддерживается при помощи компаратора 14 совместно с формирователем уровня тока 15. Излишки энергии пьезоэлемента 18, определяемые компаратором 14 через формирователь уровня тока 15, поступают на питание микропотребляющего микроконтроллера 11, что приводит к снижению потребления тока от элемента питания 13.
Информация о накопленном расходе газа выводится на жидкокристаллический индикатор 12. Данные о накопленном расходе периодически сохраняются в энергонезависимой памяти микропотребляющего микроконтроллера 11, что предотвращает несанкционированное изменение накопленного расхода газа и позволяет снять данные о накопленном расходе даже после отключения схемы от элемента питания 13.
Микропотребляющий усилитель 10 переменного тока обеспечивает усиление переменного напряжения, поступающего с пьезоэлемента 18. Схема усилителя заявленного устройства имеет фильтрующие цепи для эффективного выделения полезного низкочастотного сигнала и подавления высокочастотных помех. Схема подключения микропотребляющего усилителя 10 не зависит от частоты входного сигнала с пневмоэлектропреобразователя 7, что приводит к стабилизации энергопотребления всей схемы и обеспечивает стабильность характеристик устройства.
Введение схемы динамического перераспределения энергии датчика расхода газа позволяет отказаться от ручной регулировки уровня входного сигнала. Рабочие режимы ручной регулировки изменяются в процессе эксплуатации из-за «старения» электронных компонентов. Динамическое перераспределение выполняет функцию автоматического ограничения входного сигнала и «старение» электронных компонентов не влияет на рабочие режимы, т.к. они динамически удерживаются обратными связями.
Схема динамического перераспределения энергии датчика расхода газа выполняет функцию мгновенной защиты электронного блока от перенапряжения. В аналогах такая защита не предусмотрена.
Введение схемы динамического перераспределения энергии датчика расхода газа позволяет уменьшить нагрузку на батарею питания, что увеличивает ресурс батареи и самого газового счетчика и позволяет использовать батарею с меньшей емкостью.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ГАЗА | 2011 |
|
RU2476829C2 |
СЧЕТЧИК ГАЗОВЫЙ БЫТОВОЙ МАЛОГАБАРИТНЫЙ | 2020 |
|
RU2777707C1 |
СТРУЙНЫЙ АВТОГЕНЕРАТОРНЫЙ РАСХОДОМЕР-СЧЕТЧИК | 2009 |
|
RU2422776C2 |
СТРУЙНЫЙ РАСХОДОМЕР И СПОСОБ ЕГО РЕАЛИЗАЦИИ | 2009 |
|
RU2421690C2 |
Счётчик газа (варианты) | 2018 |
|
RU2715087C1 |
СЧЕТЧИК ГАЗА | 2012 |
|
RU2488780C1 |
Счетчик расхода газа с температурной компенсацией | 2021 |
|
RU2780030C1 |
УСТРОЙСТВО УПРАВЛЕНИЯ ОСВЕЩЕНИЕМ | 2003 |
|
RU2249925C2 |
СИСТЕМА ЭЛЕКТРОННОГО УЧЕТА РАСХОДА ЭНЕРГОНОСИТЕЛЕЙ | 2007 |
|
RU2340096C1 |
Высоковольтный счетчик электрической энергии прямого включения | 2023 |
|
RU2807018C1 |
Изобретение относится к бытовым приборам учета расхода газа и паров сжиженного газа. Электронный блок снабжен компаратором, обеспечивающим автоматическое определение уровня превышения сигнала датчика расхода газа, и формирователем уровня тока, обеспечивающим уменьшение уровня входного сигнала на входе микропотребляющего усилителя напряжения переменного тока. Формирователь уровня тока соединен с микропотребляющим микроконтроллером для его дополнительного питания. Электронный блок снабжен инфракрасным импульсным излучателем, обеспечивающим подключение к персональному компьютеру, или дополнительно снабжен сетевым интерфейсом для интегрирования в автоматизированную систему коммерческого учета потребления газа. Технический результат - защита электронного блока от мгновенных импульсных помех (перенапряжения) за счет перераспределения энергии датчика расхода газа с одновременным уменьшением емкости применяемой батареи и увеличением срока ее эксплуатации. 2 ил.
Устройство для измерения расхода газа, содержащее основание с входным и выходным патрубками, на котором смонтирован герметичный корпус с установленными внутри него температурным датчиком, датчиком расхода газа, включающим пневмоэлектропреобразователь и струйный автогенератор, построенный по многоконтурной системе замкнутых камер, соединенных каналами с низким пневматическим сопротивлением, а также электронный блок, содержащий микропотребляющий усилитель напряжения переменного тока с пьезоэлемента пневмоэлектропреобразователя с фильтрующими цепями и цепью стабилизации тока, микропотребляющий микроконтроллер, управляющий индикацией накопленного объема газа с периодическим сохранением данных в энергонезависимую память, жидкокристаллический индикатор, элемент питания, отличающееся тем, что электронный блок снабжен компаратором, обеспечивающим автоматическое определение уровня превышения сигнала датчика расхода газа и соединенного с формирователем уровня тока, обеспечивающего уменьшение уровня входного сигнала на входе микропотребляющего усилителя напряжения переменного тока и соединенного с микропотребляющим микроконтроллером для его дополнительного питания, при этом электронный блок дополнительно снабжен инфракрасным импульсным излучателем, обеспечивающим подключение к персональному компьютеру, или дополнительно снабжен сетевым интерфейсом для интегрирования в автоматизированную систему коммерческого учета потребления газа.
Способ пуска асинхронной машины, снабженной компенсированным преобразователем частоты | 1926 |
|
SU7495A1 |
Наплечник для грузчиков | 1928 |
|
SU14991A1 |
JP 2004150921 A, 27.05.2004 | |||
US 20030101809 A1, 05.06.2003. |
Авторы
Даты
2017-02-13—Публикация
2015-11-10—Подача