СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С ИСПОЛЬЗОВАНИЕМ СИНГЛЕТНОГО КИСЛОРОДА Российский патент 2017 года по МПК F02B51/06 F02M27/08 

Описание патента на изобретение RU2610858C1

Изобретение относится к двигателестроению и может быть использовано при организации рабочего процесса в двигателе внутреннего сгорания (ДВС).

Известно использование синглетного кислорода (СК) для улучшения показателей ДВС (патент США №6659088). Известный способ работы ДВС включает производство СК из молекулярного кислорода и смешивание СК с воздухом.

Синглетный кислород является общим названием электронно-возбужденных состояний молекулярного кислорода, обозначаемых в спектроскопии как O2(alΔg) или O2(b1g+). Из-за различия в электронных оболочках они имеют различные свойства. СК является более активным окислителем, но менее стабильным, чем кислород в триплетном (основном) состоянии O2(X3g-).

Нестабильность и потери энергии, затраченной на возбуждение молекул O2 в синглетное состояние, обусловленные тушением молекул O2(а1Δg), препятствуют успешному использованию данного способа.

Известен способ работы двигателя (патент РФ №2496997), который заключается в подаче в цилиндр двигателя воздуха и топлива, обогащении воздуха на впуске СК, формировании топливовоздушной смеси (ТВС) заданного состава, воспламенении топливовоздушного заряда в цилиндре двигателя, расширении продуктов сгорания и выпуске их из цилиндра двигателя. Во время работы двигателя измеряют температуру газов в цилиндре двигателя, а количество синглетного кислорода в воздухе, подаваемом во впускной трубопровод, устанавливают в зависимости от величины измеренной температуры.

Данный способ обеспечивает генерирование необходимого количества СК в зависимости от режима работы двигателя.

К недостаткам указанного способа следует отнести возможность тушения молекул O2(alΔg) во впускном тракте двигателя, что ведет к значительному перерасходу энергии, затрачиваемой на возбуждение молекул кислорода в синглетное состояние.

В основу изобретения положена задача обеспечения контролируемого воспламенения топлива в камере сгорания и получения заданных показателей двигателя по топливной экономичности и токсичности отработавших газов.

Технический результат заключается в уменьшении затрат энергии на производство необходимого количества синглетного кислорода.

Поставленная задача решается тем, что в способе работы двигателя внутреннего сгорания с использованием синглетного кислорода, при котором обеспечивают генерирование синглетного кислорода из молекулярного кислорода в надпоршневом объеме двигателя, посредством лазерного излучения, согласно изобретению осуществляют, по меньшей мере, одноразовый впрыск топлива в надпоршневой объем цилиндра двигателя в течение одного рабочего цикла, взаиморасположение оси лазерного излучения и оси топливного факела устанавливают так, чтобы обеспечить их пересечение в надпоршневом объеме, начало генерирования синглетного кислорода осуществляют с опережением по отношению к моменту впрыска топлива в надпоршневой объем, при этом продолжительность процесса генерирования синглетного кислорода по углу поворота коленчатого вала двигателя корректируют с учетом режима его работы.

Желательно при этом обеспечить пересечение осей лазерного излучения и топливного факела в надпоршневом объеме под острым углом.

Целесообразно, если положение области пересечения осей лазерного излучения и топливного факела в надпоршневом объеме выбирают с учетом места размещения электродов свечи зажигания или с учетом места размещения нагревательного элемента свечи накаливания.

Известно, что электронно-возбужденные молекулы и атомы реагируют намного быстрее, чем невозбужденные. Поэтому возбуждение реагирующих молекул позволяет ускорить образование активных радикалов, носителей цепного механизма в реакциях инициирования и распространения цепи и, как следствие, интенсифицировать горение. Известно также, что насыщение воздуха синглетным кислородом интенсифицирует протекание цепной реакции окисления в топливовоздушной смеси.

Для выработки СК, находящегося в метастабильном состоянии O2(a1Δg) предпочтительно использовать лазер, генерирующий излучение с длиной волны 762,35±0,05 нм, которое резонансно возбуждает молекулы O2. Резонансно возбужденная молекула кислорода переходит из основного (триплетного) состояния в электронно-возбужденное состояние с последующим переходом молекул в более стабильное состояние O2(a1Δg). Время нахождения молекулы кислорода в состоянии O2(a1Δg) варьируется от нескольких секунд до десятков и сотен секунд и зависит от параметров окружающей среды. В любом случае время «жизни» молекулы кислорода в электронно-возбужденном состоянии O2(a1Δg) на один-два порядка больше времени полного рабочего цикла двигателя.

Влияние содержания СК в ТВС на интенсивность предпламенных реакций показано в работе «Комплексный анализ воспламенения и горения водородно-воздушных и метано-воздушных смесей при воздействии резонансного лазерного излучения» А.М. Старик, П.С. Кулешов, Н.С. Титова. // в кн. «Неравновесные физико-химические процессы в газовых потоках и новые принципы организации горения» под ред. A.M. Старика, М.: ТОРУС ПРЕСС 2011, с. 603-634. В указанной работе на основе численного моделирования показано, что для метано-воздушных смесей лазерно-индуцированное возбуждение молекул O2 излучением с λ=762,346 нм в состояние эффективно сокращает время индукции (задержки воспламенения) и температуру воспламенения.

Также установлено (см. A.M. Starik, V.E. Kozlov, N.S. Titova. On the influence of singlet oxygen molecules on characteristics of HCCI combustion: A numerical study. http://dx.doi.org/10.1080/13647830.2013.783238), что возбуждение молекул O2 при значительном опережении (угол поворота коленчатого вала более 100° до верхней мертвой точки (ВМТ) сжатия) температура в цилиндре двигателя не достигает оптимального значения, и, в этом случае, тушение возбужденных молекул O2(a1Δg) может быть весьма заметным на интервале времени, необходимом для воспламенения ТВС. Следовательно, часть энергии, затраченная на возбуждение молекул O2, переходит в поступательные степени свободы молекул и нагревает газ. Поэтому существует оптимальный момент начала генерирования СК, который зависит от режима работы двигателя и состава ТВС. Выявлено, что такой угол может составлять 10-30° угла поворота коленчатого вала (угла п.к.в.) до ВМТ сжатия.

Изобретение поясняется чертежом, где показана принципиальная схема устройства управления для реализации заявленного способа. На схеме использованы следующие обозначения:

1 - лазер с оптоволокном, передающим лазерное излучение,

2 - система фокусирующих зеркал,

3 - оптические окна,

4 - надпоршневой объем,

5 - свеча зажигания,

6 - топливная форсунка,

7 - блок обработки сигналов датчиков контролируемых параметров рабочего цикла двигателя,

8 - поршень,

9 - блок управления лазером,

10 - топливный факел,

11 - зона первичного окисления топлива.

Заявленный способ работы двигателя внутреннего сгорания с использованием СК, генерируемого в надпоршневом объеме 4, осуществляется следующим образом.

В двигателе внутреннего сгорания реализуют рабочий цикл с искровым зажиганием или с воспламенением от сжатия. Для этого осуществляют процессы впуска, сжатия, сгорания, расширения и выпуска. В цилиндр двигателя подают воздух, где его сжимают. В процессе сжатия генерируют СК из молекулярного кислорода, находящегося в надпоршневом объеме 4. Генерирование СК осуществляют лазерным излучением с длиной волны 762,2-762,4 нм, которое резонансно возбуждает молекулы O2.

Излучение от лазера 1 передают по оптоволокну. Ввод лазерного излучения в надпоршневой объем 4 осуществляется через оптические окна 3, установленные в стенках цилиндра двигателя.

Резонансно возбужденная молекула кислорода переходит из основного, триплетного состояния O2(X3g-) в синглетное, электронно-возбужденное состояние O2(b1g+) с последующим переходом в более стабильное возбужденное состояние O2(a1Δg).

Оптические окна 3 выполнены из материала, обладающего прозрачностью на длине волны лазерного излучения и выдерживающего высокую температуру и давление, например из диоксида циркония, стабилизированного иттрием. При этом оптические окна 3 снабжены системой фокусирующих зеркал 2, предназначенных для создания зоны однородного лазерного излучения путем обеспечения многократных переотражений лазерного луча от зеркал 2.

Кинетика процесса образования электронно-возбужденных молекул кислорода состояния с образованием молекул СК состояния O2(a1Δg) при возбуждении молекулярного кислорода лазерным излучением детально описана в работе «Световой котел-генератор синглетного кислорода O2(a1Δg)» Н.И. Липатов, А.С. Бирюков, Э.С. Гулямова // Квантовая электроника 2008, т. 38. №13, с. 1179-1182.

Топливной форсункой 6 впрыскивают топливо в надпоршневой объем 4. Возможна подача части топлива вместе с впускаемым воздухом (например, при реализации газодизельного процесса или частичном впрыске топлива во впускной трубопровод в двигателе с искровым зажиганием). В зависимости от реализуемого рабочего цикла и, соответственно, используемого топлива (бензин/газ или дизельное топливо/газ) воспламенение осуществляют электрической искрой с использованием свечи зажигания 5 или за счет самовоспламенения подаваемого топлива (дизельный или газодизельный процесс).

Момент начала генерирования для получения СК в состояниях O2(a1Δg), O2(b1g+) по углу п.к.в. устанавливают исходя из его оптимального значения. Исследования показали, что существует оптимальный угол начала генерирования (угол опережения генерирования по отношению к ВМТ сжатия), при котором возбуждение молекул O2 в синглетное состояние обеспечивает максимальный эффект в сокращении продолжительности предпламенных процессов.

В результате численного моделирования установлено, что зависимость времени воспламенения от момента воздействия на рабочую смесь с целью производства СК имеет максимум (например, оптимальный угол опережения генерирования при мольной доле молекул O2(a1Δg) составляет угла п.к.в. до ВМТ сжатия). Дальнейшее уменьшение угла опережения генерирования, при котором производятся возбужденные молекулы кислорода в гомогенной или гетерогенной ТВС, приводит к уменьшению его влияния на время горения, т.к. при этом не успевают в должном количестве образоваться активные радикалы - носители цепного механизма. Увеличение угла опережения генерирования приводит к преждевременному тушению молекул СК, обрыву, прекращению распространения цепных реакций, ввиду низкой температуры сжимаемого воздуха или ТВС.

Для сравнения, при величине угла опережения генерирования СК θex=142° угла п.к.в. до ВМТ, т.е. сразу после закрытия впускного клапана, и аналогичной мольной доле СК воспламенение в той же целевой точке (не менее 4° поворота коленчатого вала до ВМТ) невозможно.

Согласно заявленному способу обеспечивают генерирование СК в состояниях (O2(a1Δg), O2(b1g+) из молекулярного кислорода в надпоршневом объеме 4 двигателя, посредством лазерного излучения, вырабатываемого лазером 1. В течение одного рабочего цикла осуществляют, по меньшей мере, одноразовый впрыск топлива форсункой 6 в надпоршневой объем 4 цилиндра двигателя. В зависимости от реализуемого рабочего цикла в течение последнего может осуществляться несколько впрысков топлива по углу п.к.в. (многоразовый или многофазный впрыск).

Для обеспечения наработки достаточной концентрации (количества) СК в надпоршневом объеме 4 и запуска цепных реакций окисления молекул топлива, начало генерирования синглетного кислорода в состояниях O2(a1Δg), O2(b1g+) осуществляют с опережением по отношению к моменту впрыска топлива. В случае многоразового (многофазного) впрыска под термином «момент впрыска топлива» в рамках данной заявки понимают начало впрыска первой дозы топлива по углу п.к.в.

Как было указано выше, оптимальное значение угла опережения начала генерирования СК зависит от режима работы двигателя. В частности, при изменении скоростного режима работы двигателя требуется регулировать угол опережения генерирования СК, т.к. изменение скоростного режима влечет за собой изменение промежутка времени, приходящегося на заданный угловой интервал п.к.в. Изменение нагрузочного режима приводит к изменению количества топлива, находящегося в надпоршневом объеме 4, а для двигателя с количественным регулированием - к дополнительному изменению количества остаточных газов в цилиндре двигателя. Следовательно, начало генерирования СК и количество генерируемого СК (продолжительность процесса генерирования) должно согласовываться с режимом работы двигателя.

Причем для осуществления контроля над рабочим процессом целесообразно вводить обратную связь по какому-либо параметру, который характеризует процесс сгорания и/или процесс расширения. В качестве такого параметра может использоваться: момент воспламенения топлива по углу п.к.в. двигателя, положение максимума давления газов в камере сгорания по углу п.к.в. двигателя, положение максимума температуры газов в камере сгорания по углу п.к.в. двигателя и значение максимума температуры, температура газов в конце процесса расширения или их температура на выпуске, после выпускного клапана и другие параметры.

Для обеспечения интенсивного взаимодействия СК с молекулами топлива, впрыскиваемого в надпоршневое пространство 4, взаиморасположение оси лазерного излучения и оси топливного факела 10 устанавливают так, чтобы обеспечить их пересечение в надпоршневом объеме 4. Как показано на иллюстрации, целесообразно, чтобы топливный факел 10 пересекал ось лазерного излучения под острым углом. Такое взаиморасположение оси лазерного излучения и оси топливного факела 10 обеспечивает формирование достаточного объема зоны 11 первичного окисления топлива. Дальнейшее окисление молекул топлива осуществляется во всем объеме надпоршневого пространства 4.

Положение области пересечения осей лазерного излучения и топливного факела 10 в надпоршневом объеме 4, фактически - положение зоны 11 первичного окисления топлива, выбирают с учетом места размещения электродов свечи зажигания 5. Учет взаимного расположения электродов свечи зажигания 5 и положение зоны 11 первичного окисления топлива необходим для обеспечения контролируемого воспламенения топлива, предварительно окисленного в зоне 11. При выборе расположения зоны 11 первичного окисления топлива учитывают направленность вихревого движения заряда в надпоршневом пространстве 4 и подбирают месторасположение зоны 11 так, чтобы топливо, окисленное синглетным кислородом, в котором интенсивно идут предпламенные процессы, подавалось в область электродов свечи зажигания 5 к моменту искрового разряда в межэлектродном пространстве, в случае двигателя с искровым зажиганием, или в область размещения нагревательного элемента свечи накаливания, в случае дизеля.

Использование СК для окисления топлива в надпоршневом пространстве 4 позволяет расширить пределы воспламенения ТВС и перейти тем самым к использованию бедных смесей, улучшить процесс сгорания и сократить выбросы токсичных компонентов с отработавшими газами.

При осуществлении контроля над протеканием рабочего процесса измерение требуемых параметров осуществляют с использованием стандартных датчиков (на чертеже линии входных сигналов от датчиков показаны пунктирными линиями со стрелками), информация от которых передается на блок 9 обработки. Блок 9 обработки сигналов датчиков измеряемых параметров сравнивает текущее значение величины выбранного контролируемого параметра с заданным его значением и формирует сигнал рассогласования. Сигнал рассогласования поступает на вход блока 8 управления лазером 1. Блок 8 управления выполнен с возможностью реализации алгоритма управления генерацией лазерного излучения, который будет описан ниже.

Изменение продолжительности периода генерирования СК обеспечивает изменение его мольной доли в надпоршневом пространстве 4, что в свою очередь оказывает существенное влияние на период задержки воспламенения и, соответственно, изменяет характерные показатели рабочего цикла.

Так, например, в результате численного моделирования установлено, что изменение мольной доли СК с 1% до 4% при прочих равных условиях сдвигает момент воспламенения на 6° по углу п.к.в., при этом максимальная температура цикла увеличивается на 60 К, а максимальное давление возрастает на 0,2 МПа.

Алгоритм изменения момента начала генерирования СК следующий. При уменьшении частоты вращения коленчатого вала двигателя угол опережения начала генерирования СК по углу п.к.в. уменьшают, при увеличении частоты вращения коленчатого вала - увеличивают. При изменении нагрузочного режима начало генерирования СК по углу п.к.в. не меняют.

Алгоритм изменения продолжительности процесса генерирования СК следующий. При уменьшении нагрузки уменьшают продолжительность процесса генерирования СК, при увеличении нагрузки - увеличивают. Исключение составляет режим глубокого дросселирования, при переходе на который с режима малых нагрузок необходимо увеличивать продолжительность процесса генерирования СК.

В случае использования в качестве контролируемого параметра момента воспламенения топлива по углу п.к.в. двигателя используют фотодетектор (на чертеже не показан), с помощью которого фиксируют первичный очаг воспламенения (вспышку) в надпоршневом пространстве 4, при этом фиксируют соответствующее вспышке положение коленчатого вала двигателя датчиком положения коленчатого вала (не показан). Фотодетектор может быть связан с оптоволокном лазера 1 или иметь индивидуальный ввод в надпоршневое пространство 4. По результатам измерений определяют положение момента воспламенения топлива по углу п.к.в. относительно ВМТ. Если положение момента воспламенения топлива выходит за пределы заданного значения (5-10 градусов угла п.к.в. до ВМТ), то корректируют продолжительность периода генерирования СК.

В случае использования в качестве контролируемого параметра положения максимума давления газов в камере сгорания по углу п.к.в. двигателя поступают аналогичным образом.

Непрерывно измеряют давление газов в надпоршневом пространстве 4 датчиком давления (не показан) и фиксируют положение коленчатого вала двигателя - датчиком положения коленчатого вала (не показан). По результатам измерений определяют положение максимума давления относительно ВМТ. Если положение максимума давления газов выходит за пределы заданного значения (10-15 градусов угла п.к.в. после ВМТ), то корректируют продолжительность периода генерирования СК.

Например, в результате измерений положения максимума давления газов обнаружено, что его фактическое значение равно 2 градуса угла п.к.в. после ВМТ. В данном случае целесообразно уменьшить период генерирования СК с целью уменьшения мольной доли СК. Если фактическое значение положения максимума давления газов больше 15 градусов угла п.к.в. после ВМТ, то целесообразно увеличить период генерирования СК.

В случае использования других контролируемых параметров, таких как положение максимума температуры газов в камере сгорания по углу п.к.в. двигателя и/или значения максимума указанной температуры, температуры газов в конце процесса расширения или их температуры на выпуске после выпускного клапана и других, алгоритм корректировки продолжительности периода генерирования СК остается таким же.

Похожие патенты RU2610858C1

название год авторы номер документа
СПОСОБ ОРГАНИЗАЦИИ ВОСПЛАМЕНЕНИЯ И ГОРЕНИЯ ТОПЛИВА В ПОРШНЕВОМ ДВИГАТЕЛЕ 2015
  • Старик Александр Михайлович
  • Кулешов Павел Сергеевич
  • Титова Наталия Сергеевна
  • Мурашев Петр Михайлович
RU2610874C1
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ И СПОСОБ ЕГО РАБОТЫ 2011
  • Старик Александр Михайлович
  • Сериков Ростислав Иванович
  • Титова Наталия Сергеевна
  • Козлов Вячеслав Евгеньевич
  • Мурашев Петр Михайлович
RU2496997C2
Двухтактный поршневой двигатель внутреннего сгорания и способ его работы 2022
  • Кореневский Геннадий Витальевич
RU2776088C1
ПОРШНЕВОЙ ДВИГАТЕЛЬ С КОМПРЕССИОННЫМ ЗАЖИГАНИЕМ И СПОСОБ ЕГО РАБОТЫ 2011
  • Старик Александр Михайлович
  • Сериков Ростислав Иванович
  • Титова Наталия Сергеевна
  • Козлов Вячеслав Евгеньевич
  • Мурашев Петр Михайлович
RU2496995C2
Способ инициирования импульсной детонации 2017
  • Копченов Валерий Игоревич
  • Кулешов Павел Сергеевич
  • Бабушенко Денис Иванович
  • Собур Алла Анатольевна
RU2659415C1
УСТРОЙСТВО ЛАЗЕРНОГО ВОСПЛАМЕНЕНИЯ ТОПЛИВОВОЗДУШНОЙ СМЕСИ В ДВИГАТЕЛЕ ВНУТРЕННЕГО СГОРАНИЯ 2016
  • Болотин Николай Борисович
RU2634300C2
СПОСОБ РАБОТЫ МНОГОТОПЛИВНОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И МНОГОТОПЛИВНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 1999
  • Вохмин Д.М.
  • Маланичев Д.Г.
RU2167316C2
РАБОЧИЙ ПРОЦЕСС ДВС С СООБЩАЮЩИМИСЯ ЦИЛИНДРАМИ 1998
  • Зуев А.А.
RU2135788C1
СПОСОБ ЛАЗЕРНОГО ВОСПЛАМЕНЕНИЯ ТОПЛИВА В ДИЗЕЛЬНОМ ДВИГАТЕЛЕ, УСТРОЙСТВО ДЛЯ ЛАЗЕРНОГО ВОСПЛАМЕНЕНИЯ ТОПЛИВА В ДИЗЕЛЬНОМ ДВИГАТЕЛЕ И ВОСПЛАМЕНИТЕЛЬ 2013
  • Цейтлин Дмитрий Моисеевич
  • Ребров Сергей Григорьевич
  • Голиков Андрей Николаевич
RU2553916C2
КАМЕРА СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ ЕЕ РАБОТЫ 2012
  • Сериков Ростислав Иванович
  • Старик Александр Михайлович
  • Титова Наталия Сергеевна
  • Фаворский Олег Николаевич
  • Шарипов Александр Сергеевич
RU2505749C1

Иллюстрации к изобретению RU 2 610 858 C1

Реферат патента 2017 года СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С ИСПОЛЬЗОВАНИЕМ СИНГЛЕТНОГО КИСЛОРОДА

Изобретение относится к двигателестроению и может быть использовано при организации рабочего процесса в поршневом двигателе (ПД). Технический результат заключается в уменьшении затрат энергии на производство необходимого количества синглетного кислорода (СК). Сущность изобретения заключается в том, что обеспечивают генерирование СК из молекулярного кислорода в надпоршневом объеме (НПО) ПД посредством лазерного излучения. При этом осуществляют, по меньшей мере, одноразовый впрыск топлива в НПО цилиндра ПД в течение одного рабочего цикла, а взаиморасположение оси лазерного излучения и оси топливного факела устанавливают так, чтобы обеспечить их пересечение в НПО. Начало генерирования СК осуществляют с опережением по отношению к моменту впрыска топлива в НПО, при этом продолжительность процесса генерирования СК по углу поворота коленчатого вала двигателя корректируют с учетом режима работы ПД. 3 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 610 858 C1

1. Способ работы двигателя внутреннего сгорания с использованием синглетного кислорода, при котором обеспечивают генерирование синглетного кислорода из молекулярного кислорода в надпоршневом объеме двигателя посредством лазерного излучения, отличающийся тем, что осуществляют, по меньшей мере, одноразовый впрыск топлива в надпоршневой объем цилиндра двигателя в течение одного рабочего цикла, взаиморасположение оси лазерного излучения и оси топливного факела устанавливают так, чтобы обеспечить их пересечение в надпоршневом объеме, начало генерирования синглетного кислорода осуществляют с опережением по отношению к моменту впрыска топлива в надпоршневой объем, при этом продолжительность процесса генерирования синглетного кислорода по углу поворота коленчатого вала двигателя корректируют с учетом режима его работы.

2. Способ по п. 1, отличающийся тем, что обеспечивают пересечение осей лазерного излучения и топливного факела в надпоршневом объеме под острым углом.

3. Способ по пп. 1 или 2, отличающийся тем, что положение области пересечения осей лазерного излучения и топливного факела в надпоршневом объеме выбирают с учетом места размещения электродов свечи зажигания.

4. Способ по пп. 1 или 2, отличающийся тем, что положение области пересечения осей лазерного излучения и топливного факела в надпоршневом объеме выбирают с учетом места размещения нагревательного элемента свечи накаливания.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610858C1

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ И СПОСОБ ЕГО РАБОТЫ 2011
  • Старик Александр Михайлович
  • Сериков Ростислав Иванович
  • Титова Наталия Сергеевна
  • Козлов Вячеслав Евгеньевич
  • Мурашев Петр Михайлович
RU2496997C2
US6659088 B2 09.12.2003
US2010282195 A1 11.11.2010
ПОРШНЕВОЙ ДВИГАТЕЛЬ С КОМПРЕССИОННЫМ ЗАЖИГАНИЕМ И СПОСОБ ЕГО РАБОТЫ 2011
  • Старик Александр Михайлович
  • Сериков Ростислав Иванович
  • Титова Наталия Сергеевна
  • Козлов Вячеслав Евгеньевич
  • Мурашев Петр Михайлович
RU2496995C2
JP4191458 A 09.07.1992.

RU 2 610 858 C1

Авторы

Мурашев Петр Михайлович

Даты

2017-02-16Публикация

2015-09-24Подача