Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных сред.
В настоящее время известны и применяются много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения скорости потока из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 133-144 с.). Эти способы не предполагают применения элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущегося вещества и поступают на приемную антенну с частотой , отличной от частоты зондирующей волны на частоту . Неоднородностями вещества при этом могут быть частицы сыпучего материала, газовые и твердые включения в жидкости, твердые частицы и капли жидкости в потоке газа, обладающие электрофизическими параметрами ε, отличными от таковых для контролируемого вещества. Направления движения неоднородностей образуют различные углы с направлением этой волны. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, средняя доплеровская частота связана со средней скоростью потока по формуле:
где α - угол между направлением излучения и потоком в трубе, - длина волны в среде измерения, а εэф - ее эффективная диэлектрическая проницаемость, с - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость потока, можно определить средний массовый расход:
где S - площадь поперечного сечения потока на измерительном участке.
Как видно из формул, на точность определения расхода влияют изменения в плотности и диэлектрической проницаемости среды.
Измерение массового расхода возможно при использовании симметричной частотной модуляции зондирующих волн и определении суммы и разности разностных частот, зондирующих и отраженных (рассеянных) волн от движущегося вещества (его неоднородностей), соответствующих возрастанию и убыванию частоты зондирующей волны (SU 896418, 07.01.82). Такой метод используется в радиолокации для измерения скорости движущегося объекта и расстояния до него. В этом случае удается получить независимые выражения для эффективной диэлектрической проницаемости среды и скорости потока, при некотором эффективном расстоянии между приемо-передающей системой и движущейся средой, что при известной функциональной зависимости между плотностью среды и ε позволяет оценить ее реальный массовый расход. Недостатком данного метода является сложность конструкции, высокая стоимость широкополосных систем с частотной модуляцией и недостаточная точность из-за зависимости от состава среды и ее неоднородностей.
Известно техническое решение, принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 136 - 137 с.) - способ измерения расхода жидкости, заключающийся в том, что радиоволна с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженная волна с частотой смешивается с частью падающей волны и выделяется доплеровский сигнал их разности со средней частотой , а по этой частоте, в соответствии с формулой (2), определяется расход. Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через герметичное радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала, по максимуму спектральной плотности которого определялась средняя доплеровская частота, оценивался расход в соответствии с формулой (3). Недостатком этого устройства является зависимость с одной стороны скорости потока от эффективной диэлектрической проницаемости среды εэф согласно формуле (1), а с другой стороны еще и зависимость массового расхода от плотности среды по формуле (2), что снижает точность измерения. Также на точность измерения влияют вибрационные шумы и другие наводки, присутствующие при применении способа в реальной ситуации.
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат достигается тем, что в способе измерения массового расхода жидких сред радиоволна с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности x(t) со средней частотой . Дополнительно часть мощности радиоволны с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности y(f) со средней частотой , массовый расход определяется по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности.
Предлагаемый способ поясняется чертежом, где на Фиг. 1 представлена структурная схема устройства, его реализующая, а на Фиг. 2 и Фиг. 3 - временные диаграммы работы устройства.
Устройство содержит генератор СВЧ 1, делитель мощности 2, циркуляторы 3 и 4, приемопередающие антенны 5 и 6, смесители 7 и 8, вычислительный блок 9 (см. Фиг. 1).
Устройство работает следующим образом.
Электромагнитные колебания генератора СВЧ 1 с частотой делятся на четыре части в делителе мощности 2, после чего поступают через циркуляторы 3 и 4 на приемопередающие антенны 5, 6 и на опорные входы смесителей 7 и 8. Излучение СВЧ через радиопрозрачное окно 10 в трубопроводе 11 проникает внутрь и отражается от неоднородностей присутствующих в потоке. Эти отраженные волны принимаются антеннами 5, 6 и через циркуляторы 3, 4 попадают на измерительные входы смесителей 7 и 8. С выходов смесителей доплеровские сигналы x(t) и y(f) (см. Фиг. 2а и Фиг. 2б) поступают в вычислительный блок 9. Поскольку расстояние между антеннами равно L, то эти сигналы имеют временную задержку относительно друг друга на время τm прохождения потоком этого отрезка пути. Для этого в блоке 9 вычисляют взаимно-корреляционную Rxy функцию двух этих доплеровских сигналов x(t) и y(t) (см. Фиг. 2б) по формуле:
При необходимом времени интегрирования Т, Rxy имеет максимальное значение тогда, когда временной сдвиг между функциями x(t) и y(t) равен времени перемещения τm неоднородностей в потоке между двумя антеннами. Средняя скорость потока определится по формуле:
Также в блоке 9 по двум доплеровским сигналам x(t) и y(t) вычисляется их взаимный спектр плотности мощности (ВСПМ), максимальное значение которого будет соответствовать доплеровской частоте (см. Фиг. 3). При этом поскольку сигналы поступают в блок 9 через антенны с временным сдвигом, а вибрационные и шумовые акустические наводки воспринимаются антеннами одновременно, то результат обработки - ВСПМ будет мало восприимчив к ним. Таким образом, получив уточненное значение и вставив в формулу (1) значение из формулы (4), получим:
Для жидких и сыпучих сред существует функциональная зависимость между плотностью ρ и эффективной диэлектрической проницаемостью εэф, в некоторых случаях эта зависимость выражается аналитически. Так, для неполярных диэлектрических жидкостей (жидкий азот, водород, метан и др.) эта связь выражается уравнением Клаузиуса-Мосотти. При небольших изменениях для большинства сред можно считать, что плотность ρ пропорциональна εэф, т.е. , где K - коэффициент пропорциональности. В итоге, с учетом этого выражения, формул (5) и (4), формула (2) для массового расхода преобразуется в следующее выражение, зависящее только от и τm:
На Фиг. 2 и Фиг. 3 представлены результаты расчета нефтяного потока при L=0,1 м, , α=30°. Получаем, что при τm=89 мс, , скорость потока и εэф=2,2.
Таким образом, данное устройство, реализующее предлагаемый способ, позволяет повысить точность массового расхода среды за счет вычисления времени максимума τm взаимной корреляционной функции двух доплеровских сигналов, а также частоты максимума их взаимного спектра плотности мощности .
название | год | авторы | номер документа |
---|---|---|---|
РАДИОВОЛНОВЫЙ РАСХОДОМЕР | 2015 |
|
RU2611255C1 |
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД | 2016 |
|
RU2620774C1 |
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД | 2015 |
|
RU2597666C1 |
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ И СЫПУЧИХ СРЕД | 2017 |
|
RU2654926C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ И СЫПУЧИХ СРЕД | 2015 |
|
RU2585320C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД | 2015 |
|
RU2601273C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД | 2015 |
|
RU2601538C1 |
РАДИОВОЛНОВОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА ЖИДКИХ СРЕД | 2015 |
|
RU2597663C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД | 2016 |
|
RU2620779C1 |
РАДИОЛОКАТОР ИЗМЕРЕНИЯ ПАРАМЕТРОВ ВЕТРА | 2023 |
|
RU2811547C1 |
Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных сред. Cпособ измерения массового расхода жидких сред заключается в том, что радиоволна с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности x(t) со средней частотой . Дополнительно часть мощности радиоволны с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешиваются с частью падающей волны и выделяется доплеровский сигнал их разности y(t) со средней частотой , массовый расход определяется по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности. Технический результат – повышение точности. 3 ил.
Способ для измерения массового расхода жидких и сыпучих сред, состоящий в том, что радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока среды, отраженные волны с частотой смешивают с частью падающей волны и выделяют доплеровский сигнал их разности x(t) со средней частотой , отличающийся тем, что часть мощности радиоволны с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока на расстоянии L по его оси от первой волны, отраженные волны смешивают с частью падающей волны и выделяют доплеровский сигнал их разности y(t) со средней частотой , а массовый расход определяют по времени максимума взаимно-корреляционной функции сигналов x(t) и y(t) и по частоте максимума их взаимного спектра плотности мощности.
JP 8285649 A, 01.11.1996 | |||
Устройство для измерения массового расхода вещества | 1984 |
|
SU1257409A1 |
Устройство для измерения массового расхода жидких и сыпучих сред | 1980 |
|
SU896418A1 |
СПОСОБ ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ГАЗОЖИДКОСТНО-ТВЕРДОТЕЛЬНОГО ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2247947C1 |
Авторы
Даты
2017-02-21—Публикация
2015-12-07—Подача