Электровакуумный прибор СВЧ Российский патент 2017 года по МПК H01J25/00 

Описание патента на изобретение RU2612028C1

Изобретение относится к электронной технике, в частности к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором, в которых модуляция по скорости и плотности сформированного пушкой электронного потока происходит в первом резонаторе и трубах дрейфа, а отбор энергии - в зазоре второго резонатора.

Предлагаемое устройство предназначено для генерации большой мощности СВЧ диапазона с достаточно высоким значением КПД, превышающим КПД известных двухрезонаторных генераторов на 25-30%, то есть примерно в два раза.

Известны двухрезонаторные и двухзазорные однорезонаторные генераторы, работающие на синфазном или противофазном видах колебаний [1]. Во всех этих генераторах, как и в двухрезонаторных усилительных клистронах, КПД не превышает 15-20% [2]. В частности, известен генераторный клистрон «с буферным каскадом» [3], взятый нами за прототип, в котором первый резонатор с двумя зазорами обеспечивает самовозбуждение генератора при условии, что угол пролета электронов между узкими зазорами резонатора при работе на противофазном виде колебаний удовлетворяет равенству θ12=2π(n+0,25), где n=0, 1, 2, … - номер зоны генерации. В первом зазоре первого резонатора электронный поток модулируется по скорости, а в трубе дрейфа - по плотности и приходит во второй зазор, где отдает часть энергии СВЧ полю, а затем проходит еще одно пространство дрейфа и попадает в зазор выходного резонатора. Отмечается, что КПД прибора такой же, как в двухрезонаторном усилителе, то есть не превышает 30%.

Целью предлагаемого изобретения является увеличение КПД двухрезонаторных генераторов с двухзазорным первым резонатором с противофазным видом колебаний. Предлагаемый электронный прибор, как и прототип, содержит электронную пушку, два резонатора, первый из которых является двухзазорным, трубы дрейфа, коллектор, вывод энергии. Основное отличие предлагаемого прибора заключается в том, что длины зазоров первого резонатора выбираются более протяженными по сравнению с узкими зазорами традиционных клистронов, в том числе и прототипа.

Угол пролета в первом зазоре θ1=γd1=(1,5-1,6)π, где d1 - длина первого зазора, ω - круговая частота, - скорость электронов на входе в пространство взаимодействия первого зазора, см/с, U0 - ускоряющее напряжение, В, λ - рабочая длина волны, см.

Угол пролета во втором зазоре θ2=γd2=(1,1-1,3)π, где d2 - длина второго зазора.

Угол пролета между центрами зазоров выбирается, во-первых, из условия самовозбуждения первого резонатора, а во-вторых, для обеспечения эффективного группирования электронов после прохождения второго зазора, то есть больше оптимального значения с точки зрения получения максимального КПД θ12=2π(n+0,25), где n - номер зоны генерации. Для первой зоны в предлагаемом приборе угол пролета выбирается в пределах θ12=(2,5-2,6)π в зависимости от первеанса пушки и амплитуды напряжений на зазорах первого резонатора.

Эффективное группирование электронов, которое начинается в первом резонаторе и продолжается в трубе дрейфа между резонаторами, обеспечивается при относительных амплитудах СВЧ напряжения на зазорах первого резонатора ξ1=Um1/U0 в пределах от 1,1 до 1,3. Для получения указанных значений амплитуд СВЧ напряжения на зазорах первого резонатора требуется ток, величина которого выбирается из условия:

где ρ - характеристическое сопротивление, Q0 - собственная добротность первого резонатора. Такой ток можно получить в многолучевой электронно-оптической системе.

Численные расчеты показывают, что при выполнении условия самовозбуждения первого резонатора на противофазном виде колебаний и отборе в этом резонаторе от электронного потока от 1 до 2% подводимой мощности P0=I0U0 использование двух традиционных узких зазоров с относительными амплитудами СВЧ напряжения ξ1 на них в пределах от 0,2 до 0,3 позволяет получить относительную амплитуду первой гармоники конвекционного тока Im1/I0 в пролетной трубе между резонаторами, равной 1,3-1,4. В предлагаемом приборе применение двух протяженных пространств взаимодействия в первом резонаторе с относительными амплитудами ξ1 на каждом зазоре в пределах от 1,1 до 1,3 при том же значении отбора подводимой мощности от электронного потока увеличивает относительную амплитуду первой гармоники конвекционного тока в пролетной трубе между резонаторами до значений 1,55-1,65, как в многорезонаторных клистронах.

Технический результат настоящего изобретения состоит в создании нового типа двухрезонаторных генераторов СВЧ с большими углами пролета в пространствах взаимодействия первого двухзазорного резонатора, отличающихся значением КПД на 25-30% больше по сравнению с традиционными двухрезонаторными клистронными генераторами с узкими зазорами.

Эскиз предложенного двухрезонаторного генератора с протяженными пространствами взаимодействия в первом двухзазорном резонаторе показан на чертеже, где обозначено: 1 - многолучевая электронная пушка, 2 - первая пролетная труба, 3 - двухзазорный резонатор, 4 - вторая пролетная труба (первая труба дрейфа между зазорами первого резонатора), 5 и 6 - стержни, поддерживающие трубу дрейфа 4, 7 - третья пролетная труба (вторая труба дрейфа между резонаторами), 8 - второй резонатор, 9 - четвертая пролетная труба, 10 - вывод энергии, 11 - коллектор. В приборе пролетные трубы имеют пролетные каналы, расположенные в нескольких рядах на концентрических окружностях, причем оси пролетных каналов совпадают с осями соответствующих катодов многолучевой пушки.

Принцип работы прибора состоит в следующем. Электронная пушка 1 создает многолучевой электронный поток, который через пролетную трубу 2 попадает в первое пространство взаимодействия двухзазорного резонатора 3, длина которого определяется из условия:

где d1 - расстояние от торца первой пролетной трубы, выступающей над торцевой внутренней стенкой резонатора со стороны пушки, до торца второй пролетной трубы.

В первом пространстве взаимодействия электронный поток модулируется по скорости, происходит предварительное группирование электронов и образование переменного конвекционного тока. При уменьшении размера d1 до величины менее 1,5π/γ увеличиваются потери мощности на модуляцию электронного потока. При увеличении d1 более 1,6π/γ группирование электронов становится менее эффективным, что может привести к снижению КПД и невыполнению условий самовозбуждения первого резонатора. При выборе длины пространства взаимодействия d1 в указанных пределах обеспечивается эффективное группирование электронов на расстоянии, соответствующем оптимальному условию самовозбуждения первого резонатора при относительной амплитуде СВЧ напряжения ξ1=Um1/U0=1,1-1,3.

Длина второго зазора резонатора выбирается также из условия эффективного группирования электронов:

где d2 - расстояние между торцами второй и третьей пролетных труб. Выбор длины второго зазора в указанных пределах также обеспечивает эффективное группирование электронов после его прохождения.

Длина второй пролетной трубы L1 в первом резонаторе выбирается из условий обеспечения самовозбуждения первого резонатора при отборе от электронного потока от 1 до 2% подводимой мощности и дальнейшего эффективного группирования электронов в третьей пролетной трубе:

где L1 - расстояние между торцами второй пролетной трубы.

Длина зазора второго резонатора выбирается такой же, как в узкополосных клистронах:

где d3 - расстояние между торцами третьей и четвертой пролетных труб.

Длину третьей пролетной трубы L2, определяющую расстояние между вторым зазором первого резонатора и зазором второго резонатора, выбирают из условия:

где L2 - расстояние между торцами третьей пролетной трубы.

Первая и третья пролетные трубы в первом резонаторе и третья и четвертая трубы во втором выступают над торцевыми стенками соответствующих резонаторов для получения максимального характеристического сопротивления. Величины выступов и диаметры труб выбираются равными:

Н=(0,04-0,08)λ,

D=(0,2-0,5)λ,

где Н - расстояние от торцов пролетных труб до торцевых стенок резонаторов, D - диаметр пролетных труб.

Выбор размера D в указанных пределах позволяет разместить в пролетных трубах необходимое число пролетных каналов с электронными лучами и соответственно обеспечить получение тока, необходимого для эффективной работы прибора. Меньшие значения коэффициентов при выборе размера D и большие значения при выборе размера Н соответствуют большим длинам волн.

Внешняя оболочка резонаторов может выполняться из закороченных отрезков прямоугольного или круглого волноводов.

Численные расчеты показывают возможность получения в двухрезонаторном генераторе с двухзазорным первым резонатором электронного КПД, равного 68% на частоте 2,45 ГГц, при ускоряющем напряжении 15 кВ, суммарном первеансе электронного потока из 15 лучей 4,5 мкА/В3/2.

Таким образом, при использовании предлагаемых технических решений может быть достигнут следующий результат: в двухрезонаторных генераторах, у которых первый резонатор имеет два протяженных пространства взаимодействия, КПД увеличивается на 25-30%, то есть примерно в два раза по сравнению с известными двухрезонаторными клистронными генераторами. Простота конструкции в сочетании с большими значениями КПД делает перспективным использование предлагаемого прибора в качестве источника большой мощности.

Источники информации

1. Шевчик В.Н. Основы электроники сверхвысоких частот. - М.: Сов. радио, 1959. - С. 173.

2. Березин В.М., Буряк В.С., Гутцайт Э.М., Марин В.П. Электронные приборы СВЧ. - М.: Высшая школа, 1985. - С. 48.

3. Warnecke R., Guenard P. Les tubes electroniques a commande par modulation de vitesse. - Paris, 1951.

Похожие патенты RU2612028C1

название год авторы номер документа
ЭЛЕКТРОВАКУУМНЫЙ ПРИБОР СВЧ 2014
  • Шишков Александр Александрович
  • Юркин Василий Иванович
RU2573597C1
ЭЛЕКТРОВАКУУМНЫЙ ПРИБОР СВЧ ТИПА "О" С СОСРЕДОТОЧЕННЫМ ВЗАИМОДЕЙСТВИЕМ 1995
  • Трегубов В.Ф.
  • Трегубов А.В.
  • Трегубов М.В.
RU2076383C1
МОЩНЫЙ ШИРОКОПОЛОСНЫЙ КЛИСТРОН 2011
  • Царев Владислав Алексеевич
  • Ширшин Владимир Иванович
  • Муллин Виктор Валентинович
  • Семенов Владимир Константинович
  • Пичугин Павел Александрович
RU2483386C2
СЕКТОРНЫЙ КЛИСТРОН (ВАРИАНТЫ) 2004
  • Урдин Александр Иванович
RU2280293C2
МОНОТРОННЫЙ МИКРОВОЛНОВЫЙ ГЕНЕРАТОР С МАТРИЧНЫМ АВТОЭМИССИОННЫМ КАТОДОМ 2015
  • Царев Владислав Алексеевич
  • Мирошниченко Алексей Юрьевич
  • Акафьева Наталья Александровна
RU2607462C1
Способ формирования сгустков высокой плотности энергии в электронном потоке и пролетный клистрон 2020
  • Гузилов Игорь Анатольевич
RU2744218C1
СПОСОБ ГЕНЕРАЦИИ СВЧ КОЛЕБАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2008
  • Мелешкевич Павел Михайлович
  • Пугнин Виктор Иванович
  • Стройков Евгений Алексеевич
  • Юнаков Алексей Николаевич
  • Панов Владимир Петрович
  • Шишков Александр Александрович
  • Юркин Василий Иванович
  • Рыбачек Валерий Павлович
RU2391739C1
СВЧ-ПРИБОР КЛИСТРОННОГО ТИПА 2008
  • Королев Александр Николаевич
  • Симонов Георгий Карлович
  • Симонов Карл Георгиевич
RU2364978C1
ЭЛЕКТРОВАКУУМНЫЙ ПРИБОР СВЧ ПРОЛЕТНОГО ТИПА С МОДУЛЯЦИЕЙ ТОКА ПУЧКА 1995
  • Трегубов В.Ф.
  • Трегубов М.В.
  • Трегубов А.В.
RU2089005C1
СВЧ-прибор клистронного типа 1989
  • Симинов К.Г.
  • Андреев В.Г.
  • Галкин В.С.
  • Шемарина К.П.
SU1658771A1

Иллюстрации к изобретению RU 2 612 028 C1

Реферат патента 2017 года Электровакуумный прибор СВЧ

Изобретение относится к электронной технике, а именно к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором. Первый резонатор обеспечивает самовозбуждение генератора в режиме автогенерации на противофазном виде колебаний и достаточно эффективное группирование электронов. Основная особенность предлагаемого прибора заключается в том, что оба зазора первого резонатора имеют протяженное пространство взаимодействия (ППВ) электронов с СВЧ полем. Изобретение предназначено для генерации большой мощности СВЧ. Технический результат - увеличение КПД благодаря использованию ППВ и больших амплитуд СВЧ напряжений в пределах (1,1-1,3)U0 в первом резонаторе. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 612 028 C1

1. Электровакуумный прибор СВЧ, содержащий электронную пушку, пролетные трубы, сквозь которые пропускают электронный поток, два резонатора, первый из которых двухзазорный, возбуждаемый электронным потоком на противофазном виде колебаний, вывод энергии и коллектор, отличающийся тем, что длины пространств взаимодействия первого резонатора d1 и d2 выбирают из условий:

d1=(1,5-1,6)π/γ,

где d1 - расстояние между торцами первой и второй пролетных труб, образующих первый зазор, см, , 1/см, ω - круговая частота колебаний, υ0 - скорость электронов на входе в пространство взаимодействия первого резонатора, см/с, λ - рабочая длина волны, см, U0 - ускоряющее напряжение, В,

d2=(1,1-1,3)π/γ,

где d2 - расстояние между торцами второй и третьей пролетных труб, образующих второй зазор,

при этом длину второй пролетной трубы L1, определяющую расстояние между зазорами, выбирают из условия:

L1=(1,1-1,3)π/γ,

где L1 - расстояние между торцами второй пролетной трубы,

величину тока электронного потока I0 выбирают из условия:

I0=(55-65)U0/ρQ0,

где ρ - характеристическое сопротивление, Q0 - собственная добротность первого резонатора,

причем электронная пушка является многолучевой, в пролетных трубах выполнены пролетные каналы, расположенные соосно соответствующим катодам электронной пушки, а длину зазора второго резонатора d3 определяют из условия:

d3=(0,2-0,4)π/γ,

где d3 - расстояние между торцами третьей и четвертой пролетных труб,

при этом длину третьей пролетной трубы L2, определяющую расстояние между вторым зазором первого резонатора и зазором второго, выбирают из условия:

L2=(1,6-1,7)π/γ,

где L2 - расстояние между торцами третьей пролетной трубы,

а расстояние от торца первой пролетной трубы до торца первого резонатора со стороны пушки, расстояние между торцами третьей пролетной трубы и соответствующими торцами первого и второго резонаторов, расстояние от торца четвертой пролетной трубы до торца второго резонатора со стороны коллектора и диаметр пролетных труб выбирают из условий:

H=(0,04-0,08)λ,

D=(0,2-0,5)λ,

где H - указанные расстояния, определяющие размеры выступов пролетных труб над торцевыми стенками резонаторов, D - диаметр пролетных труб, причем меньшие значения коэффициентов при выборе размера D и большие значения при выборе размера H соответствуют большим длинам волн.

2. Электровакуумный прибор СВЧ по п. 1, отличающийся тем, что резонаторы выполнены в виде отрезков, закороченных на концах прямоугольного или круглого волновода.

Документы, цитированные в отчете о поиске Патент 2017 года RU2612028C1

СВЧ-ПРИБОР КЛИСТРОННОГО ТИПА (ВАРИАНТЫ) 2009
  • Королев Александр Николаевич
  • Лямзин Вадим Михайлович
  • Мамонтов Алексей Викторович
  • Симонов Карл Георгиевич
RU2390870C1
СВЧ-ПРИБОР КЛИСТРОННОГО ТИПА (ВАРИАНТЫ) 2011
  • Мамонтов Алексей Викторович
  • Симонов Карл Георгиевич
RU2474003C1
МНОГОДИАПАЗОННЫЙ ЭЛЕКТРОВАКУУМНЫЙ СВЧ-ПРИБОР ТИПА О 2005
  • Копылов Вячеслав Васильевич
  • Письменко Владимир Филиппович
RU2297686C1
US 5568014A, 22.10.1996
US 7116051B2, 03.10.2006.

RU 2 612 028 C1

Авторы

Юркин Василий Иванович

Шишков Александр Александрович

Даты

2017-03-02Публикация

2014-12-29Подача