Изобретение относится к технике бесконтактного измерения поля температуры в физико-химических процессах и может быть использовано в научно-технических областях, в которых требуется применение невозмущающих и/или быстродействующих средств контроля.
Задача измерения температурного распределения на поверхности исследуемого объекта – неоднородно нагретого тела или ансамбля частиц дисперсной фазы, особенно актуальна для быстропротекающих процессов, когда достигается локальное термодинамическое равновесие, но при этом наблюдаются явления тепломассопереноса. В таких условиях протекают процессы газотермического напыления покрытий, получения материалов методом самораспространяющегося высокотемпературного синтеза (СВС), сжигания твердых, жидких и газообразных топлив, нагрева материалов источниками энергии высокой плотности – лазерные и электронные пучки, плазменные струи.
В настоящее время для измерения температуры быстропротекающих процессов лучшими характеристиками обладают датчики на основе явления фотоэффекта. Сигнал системы измерения на их основе пропорционален количеству падающих фотонов. Если объектом исследования является абсолютно черное тело (АЧТ), то его тепловое излучение подчиняется закону Планка, который при условии
где
где
где
Средства пирометрии, опирающиеся на закон (1), можно разделить на две группы:
1) яркостные – температура определяется по абсолютному уровню сигнала системы контроля
2) многочастотные – температура определяется по соотношению сигналов на двух и более длинах волн
позволяет идентифицировать его форму и определить термодинамическую температуру объекта по углу наклона прямой
Для реальных материалов спектральная зависимость излучательной способности сравнительно слаба, поэтому на практике метод позволяет измерять истинные значения температуры объектов без использования данных об их излучательной способности /3/.
Применение метода спектральной пирометрии для обработки гиперспектральных изображений позволяет получать распределение температуры на поверхности объекта. Однако современные гиперспектральные камеры формируют изображения либо путем сканирования элементов поверхности объекта, либо регистрацией серии монохромных изображений в процессе перестройки акустооптического или жидкокристаллического полосового светофильтра. Следствием этого является большая постоянная времени измерительной системы (регистрация гиперспектрального изображения размером 1024х1024 при спектральной глубине 500 длин волн и экспозиции 1 мс занимает порядка 1 секунды), что делает ее непригодной для наблюдения быстропротекающих процессов.
Яркостная пирометрия широко используется для измерения температуры неоднородно нагретых тел и ансамблей частиц с помощью многоэлементных КМОП- или ПЗС-датчиков. Регулярная структура фотоматриц, малые размеры фотоэлементов (2 – 15 мкм) и их большое количество позволяют одновременно производить измерения множества температур на всей поверхности объекта. Такие системы обладают высокой скоростью регистрации (до 10000 кадров размера 1024х1024 в секунду), которая позволяет контролировать динамику температурных полей быстропротекающих процессов. Однако яркостная пирометрия относится к методам абсолютных измерений и требует обязательной перекалибровки измерительной системы при изменении параметров ее электронно-оптического тракта: оптическое увеличение, дистанция наблюдения, коэффициент пропускания окружающей среды, усиление сигнала датчика, время экспозиции и т.д. Кроме того, подобные средства определяют яркостную температуру, которая для реальных объектов меньше термодинамической, а установить соответствие между ними возможно лишь при известной излучательной способности материала /2/. В дополнение к этим недостаткам невозможно контролировать тепловую природу детектируемого излучения, в котором может присутствовать паразитная составляющая, например, вследствие хемилюминесценции или полосатого излучения атомов и молекул окружающей среды.
Известен способ измерения распределения температуры по патенту /4/, который включает регистрацию изображения поверхности объекта на выбранной длине волны дважды: один раз за счет теплового излучения самого объекта, второй раз – изображение того же объекта, освещенного рассеянным излучением. Путем поэлементного сравнения яркости изображений определяют распределение коэффициента отражения по поверхности тела, и далее, с использованием закона Кирхгофа, – распределение излучательной способности. Таким образом, в отличие от обычного метода яркостной пирометрии, получают распределение термодинамической, а не яркостной температуры на поверхности. Недостатком способа является необходимость не только проведения предварительной калибровки регистрирующей камеры – пирометра, но и использования калиброванного (на выбранной длине волны) источника освещения, либо образца с известным коэффициентом отражения.
Также известен способ определения температурного распределения частиц дисперсной фазы в высокотемпературном потоке /5/ по спектру их суммарного теплового излучения. Способ включает регистрацию суммарного теплового спектра
Наиболее близким к заявляемому изобретению по технической сущности и достигаемому техническому результату является пирометрический способ измерения распределения яркостной температуры по поверхности нагретого тела /6/. Указанный способ принят за прототип изобретения. Способ заключается в следующем. С помощью цифровой камеры регистрируют изображение поверхности тела за счет теплового излучения на выбранной длине волны
Технической задачей настоящего изобретения является определение распределения температуры на поверхности неоднородно нагретого тела или ансамбля частиц дисперсной фазы без использования калиброванного пирометра и предварительных данных о величине излучательной способности объекта.
Поставленная задача решается благодаря тому, что одновременно регистрируют изображение участка поверхности объекта на выбранной длине волны
На фиг.1а представлено монохромное изображение вольфрамовой ленты лампы СИ10-300, зарегистрированное на длине волны 725 нм при токе накала 13 А; на фиг. 1б представлен спектр суммарного теплового излучения вольфрамовой ленты (вверху) и те же данные во вспомогательных координатах (внизу); на фиг. 1в представлено восстановленное поле термодинамической температуры на поверхности вольфрамовой ленты. На фиг. 2а представлен спектр суммарного излучения гетерофазной плазменной струи на расстоянии 200 мм от среза сопла плазмотрона в процессе напыления частиц NiAl; на фиг. 2б представлено монохромное изображение излучающих частиц NiAl на длине волны 575 нм; на фиг. 2в представлено восстановленное распределение по температурам частиц NiAl в напылительной плазменной струе.
Сущность изобретения заключается в следующем. Выбирается длина волны
где
С помощью спектрометра производится регистрация спектра суммарного теплового излучения с участка поверхности объекта, наблюдаемого цифровой камерой. При этом сигнал спектрометра в соответствии с формулами (1) и (3) равен
где
В соответствии методом спектральной пирометрии определим опорную температуру
При этом
Выражая в (11) множество температур
После этого множество температур
Пример 1. Способ спектрально-яркостной пирометрии (СЯП) был использован для исследования неравномерности поля температуры на поверхности ленты вольфрамовой лампы СИ10-300, выполняющей роль температурного эталона при калибровке пирометрических приборов. Регистрировалось изображение лампы с помощью видеокамеры PhotonFocus HD1, в оптический канал которой был установлен узкополосный светофильтр с максимумом полосы пропускания на длине волны
Пример 2. Способ СЯП был использован для определения температурного распределения частиц дисперсной фазы в напылительном плазменном потоке. Исследования проводились на установке электродугового плазменного напыления «ТЕРМОПЛАЗМА 50–01» в Институте теоретической и прикладной механики СО РАН (Новосибирск) в процессе нанесения износостойкого покрытия из порошка NiAl узкой фракции 90–100 мкм пропан-воздушной струей. В качестве средств регистрации использовались видеокамера PhotonFocus HD1 и фотоспектрометр Aseq LR1-T. Регистрация спектра суммарного излучения струи (фиг. 2а) позволила установить, что спектральный диапазон в области 725 нм содержит полосатое излучение плазмы и непригоден для пирометрических измерений. По этой причине в оптический канал видеокамеры был установлен узкополосный светофильтр с максимумом полосы пропускания на длине волны
Техническим результатом применения способа является возможность контроля поля температуры на поверхности неоднородно нагретого тела, либо ансамбля частиц дисперсной фазы в быстропротекающем процессе. Отличительной особенностью способа является совместный анализ элементов изображения поверхности излучающего объекта на выбранной длине волны
Источники информации
1) М.И. Эпштейн. Измерения оптического излучения в электронике// М.: Энергоатомиздат, 1990. – 254 с.
2) С.М. Чернин, А.В. Коган. Измерение температуры малых тел пирометрами излучения// М.: Энергия, 1980. – 96 с.
3) А.Н. Магунов. Спектральная пирометрия// М.: ФИЗМАТЛИТ, 2012. – 248 с.
4) Патент RU 2515086, МПК G01J 5/50, 2014. Пирометрический способ измерения распределения температуры на поверхности объекта.
5) Патент RU 2383873, МПК G 01J 3/30, G01K 13/04, 2010. Способ определения температурного распределения частиц конденсированной фазы в двухфазном плазменном потоке.
6) Патент UA 44416, МПК G01J 5/50, G01J 5/52, 2009. Способ определения локальной яркостной температуры в отдельных точках нагретого тела и распределения яркостной температуры по поверхности нагретого тела.
название | год | авторы | номер документа |
---|---|---|---|
Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объекта | 2019 |
|
RU2715089C1 |
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ ТЕПЛОВОГО ПОЛЯ ИССЛЕДУЕМОГО ОБЪЕКТА | 2014 |
|
RU2552599C1 |
Способ дистанционного определения термодинамической температуры быстропротекающего процесса, развивающегося в радиопрозрачном объекте, устройство для его осуществления, способы калибровки устройства и генератора шума в составе этого устройства | 2018 |
|
RU2698523C1 |
Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования | 2019 |
|
RU2721097C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗЛУЧАТЕЛЬНОЙ СПОСОБНОСТИ ТВЕРДЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2016 |
|
RU2617725C1 |
СТЕНД ДЛЯ ИССЛЕДОВАНИЯ ПАРАМЕТРОВ ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С КОНСТРУКЦИОННЫМИ МАТЕРИАЛАМИ | 2017 |
|
RU2664969C1 |
СПОСОБ ИЗМЕРЕНИЯ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ И ПИРОМЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2020 |
|
RU2737606C1 |
СПОСОБ СПЕКТРОТЕРМОМЕТРИИ | 2020 |
|
RU2752809C1 |
СПОСОБ ИЗМЕРЕНИЯ СПЕКТРАЛЬНОГО КОЭФФИЦИЕНТА ИЗЛУЧЕНИЯ ТЕЛА | 2018 |
|
RU2685548C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОГО РАСПРЕДЕЛЕНИЯ ЧАСТИЦ КОНДЕНСИРОВАННОЙ ФАЗЫ В ДВУХФАЗНОМ ПЛАЗМЕННОМ ПОТОКЕ | 2008 |
|
RU2383873C1 |
Изобретение относится к области бесконтактного измерения температуры и касается способа спектрально-яркостной пирометрии объектов с неоднородной температурой поверхности. Способ включает в себя регистрацию изображения участка поверхности излучающего объекта на выбранной длине волны и измерение спектра суммарного теплового излучения того же участка поверхности объекта в диапазоне, включающем выбранную длину волны. По зарегистрированному изображению определяют все уровни сигнала, соответствующие элементам поверхности объекта. По измеренным значениям уровня сигнала зарегистрированного изображения определяют опорный уровень сигнала, который соответствует опорному значению температуры. Значение опорной температуры вычисляют по зарегистрированному спектру излучения. Далее множество температур элементов поверхности объекта вычисляют по математической формуле, полученной с использованием формулы Вина. Технический результат заключается в повышении автономности, быстродействия и пространственного разрешения. 6 ил.
Способ спектрально-яркостной пирометрии объектов с неоднородной температурой поверхности, включающий регистрацию изображения участка поверхности излучающего объекта на выбранной длине волны
по зарегистрированному спектру суммарного теплового излучения объекта с использованием вспомогательных координат
А.Н | |||
Магунов "Спектральная пирометрия", ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА No 4, 2009 г., стр.5-28 | |||
Тепловой двигатель с жидким или газообразным рабочим веществом | 1934 |
|
SU44416A1 |
ПИРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НА ПОВЕРХНОСТИ ОБЪЕКТА | 2012 |
|
RU2515086C1 |
US 5109277 A1, 28.04.1992. |
Авторы
Даты
2017-04-18—Публикация
2015-06-17—Подача