СПОСОБ СООРУЖЕНИЯ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ Российский патент 2017 года по МПК G01M9/02 

Описание патента на изобретение RU2619131C1

Изобретение относится к аэродинамическим трубам и может быть использовано для проведения различных испытаний моделей летательных аппаратов, парашютных систем, тренировок спортсменов в условиях, соответствующих свободному падению в атмосфере, а также в качестве развлекательного аттракциона для граждан.

Известен способ сооружения аэродинамической трубы, включающий возведение аэродинамической камеры для проведения испытаний различных объектов, тренировок спортсменов и развлечений граждан, нагнетателей воздуха в камеру и силового привода нагнетателей [Аэродинамическая труба. Патент РФ №2349889, опубл. 20.03.2009 г. в бюллетене изобретений №8].

Недостатком этого способа сооружения аэродинамической трубы является использование в качестве привода нагнетателей воздуха электродвигателей, потребляющих значительную электрическую мощность, что негативно сказывается на эксплуатационных затратах аэродинамической трубы.

Прототипом предлагаемого технического решения выбран способ проведения зрелищного представления [Патент РФ №2295374, опубл. 20.03.2007 г. в бюллетене изобретений №8]. Прототип обладает такими же недостатками, что и аналог.

Технической задачей, стоящей перед изобретением, является создание способа сооружения аэродинамической трубы, использующей пневматическую энергию для ее работы, напрямую полученную из возобновляемых источников энергии (природных водотоков). При этом существенно снижаются затраты на эксплуатацию аэродинамической трубы.

Согласно изобретению техническая задача решается следующим образом. Способ сооружения аэродинамической трубы (см. Фиг. 1) включает возведение аэродинамической камеры (1) для проведения испытаний различных объектов, тренировок спортсменов или развлечения граждан, нагнетателей воздуха (2) и силовой привод нагнетателей (3). Способ сооружения аэродинамической трубы отличается тем, что силовой привод (3) выполняют в виде гидроагрегатов - генераторов пневматической энергии, получаемой прямым преобразованием гидравлической энергии водотоков в пневматическую энергию. Гидроагрегаты (3) сооружают в виде водоводов, помещают в русло водотока параллельно скорости движения воды. Гидроагрегаты (3) накапливают кинетическую энергию потока воды, преобразовывают ее в потенциальную энергию гидравлического удара, под действием которой совершается механическая работа по перемещению подвижных в радиальном направлении стенок водоводов (мембран), являющихся одновременно рабочими органами нагнетателей воздуха (2). Накопители пневматической энергии выполняют в виде воздушных ресиверов (4).

В предложенном способе кинетическая энергия всего объема воды, движущейся в водоводе с первоначальной скоростью (до инициирования гидравлического удара в водоводе), сначала преобразуется при перекрытии сечения водовода автоматически работающими от энергии потока воды ударными клапанами (5) в потенциальную энергию упругой деформации воды и стенок водовода [Гидравлика. Н.Н. Кременецкий, Д.В. Штеренлихт, В.М. Алышев, Л.В. Яковлева, М., Энергия, 1973, с. 215-217]. Под действием потенциальной энергии совершается механическая работа по радиальному перемещению подвижных частей стенок водовода (мембран), являющихся рабочими органами нагнетателей воздуха (2).

В предложенном способе кинетическая энергия начинает накапливаться в водоводах гидроагрегатов (3) при открытии ударных клапанов (5), работающих автоматически за счет энергии потока воды. Количество и время накопления кинетической энергии воды в водоводах гидроагрегатов зависит от массы воды в них, т.е. от длины и поперечных размеров водоводов. Масса является мерой инерции, чем больше длина водовода при фиксированных размерах его поперечного сечения, тем больше требуется время для накопления энергии. Накопление кинетической энергии происходит при возрастании скорости движения воды от нуля до значения, соответствующего установившемуся движению жидкости в водоводах при известных значениях гидравлических сопротивлений и напора на входе в водоводы. Далее, кинетическая энергия всего объема воды, движущейся в водоводе со скоростью, соответствующей установившемуся движению, быстро преобразуется в потенциальную энергию гидравлического удара при перекрытии сечения водовода автоматически срабатывающими от энергии потока воды ударными клапанами (5). Под действием потенциальной энергии совершается механическая работа по радиальному перемещению подвижных частей стенок водовода (мембран), приводящих в возвратно-поступательное движение рабочие органы нагнетателей воздуха (2). Нагнетатели воздуха снабжены всасывающими и нагнетательными клапанами (6). Размеры водоводов и их количество выбирают согласно гидрологическим параметрам природного или техногенного водотока. Водоводы устанавливают в створе водотока параллельно друг другу и скорости потока воды. Срабатывание автоматических ударных клапанов (5) всех параллельно установленных водоводов происходит не одновременно, а со сдвигом во времени, обеспечивая непрерывность накопления и отбора энергии во времени. Кроме того, параллельно установленные друг другу водоводы в створе водотока являются для последнего гидравлическими сопротивлениями, поэтому создают перед собой подпор, необходимый для накопления энергии и срабатывания автоматических ударных клапанов.

Способ реализуется следующим образом. Преобразованная гидроагрегатами (3) энергия потока воды с установленным на них нагнетателями воздуха (2) в пневматическую энергию поступает в теплоизолированные ресиверы (4) для сохранения тепловой энергии сжатого воздуха. Далее по мере необходимости горячий воздух поступает в расширитель (7). В качестве расширителя может быть использован турбодетандер с отбором дополнительной механической энергии, например, для привода электрогенератора (8) или обычное дроссельное устройство, регулирующее расход воздуха. В случае недостаточности тепловой энергии сжатого воздуха в ресивере (4) и предотвращения обмерзания расширителя (7), воздух перед ним подогревают в теплообменнике (9). Для подогрева воздуха используют энергию, снятую с детандера. При необходимости возможен подогрев воздуха в теплообменнике (10) перед аэродинамической камерой (1) для обеспечения в ней комфортных условий. После расширителя (7) воздух подают в аэродинамическую камеру (1).

Использование заявленного технического решения обеспечивает питание аэродинамической трубы недорогой пневматической энергией, напрямую выработанной из возобновляемых источников энергии, природных низконапорных водотоков, что снижает эксплуатационные затраты аэродинамической трубы.

Похожие патенты RU2619131C1

название год авторы номер документа
СПОСОБ СТРОИТЕЛЬСТВА МАЛЫХ ГИДРОЭЛЕКТРОСТАНЦИЙ 2013
  • Миронов Виктор Владимирович
  • Миронов Дмитрий Викторович
  • Иванюшин Юрий Андреевич
RU2548530C1
СПОСОБ ПОЛУЧЕНИЯ ТЕХНИЧЕСКИХ ГАЗОВ ИЗ ВОЗДУХА 2015
  • Миронов Виктор Владимирович
  • Миронов Дмитрий Викторович
  • Ерофеев Евгений Александрович
  • Якимова Ирина Викторовна
RU2605705C2
СПОСОБ ПОЛУЧЕНИЯ ВОДЫ ИЗ ВОЗДУХА 2016
  • Миронов Виктор Владимирович
  • Миронов Дмитрий Викторович
  • Жилина Татьяна Семеновна
  • Иванюшин Юрий Андреевич
  • Ерофеев Евгений Александрович
  • Якимова Ирина Викторовна
RU2618315C1
СПОСОБ ПРЕОБРАЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОЙ ТЕПЛОВОЙ ЭНЕРГИИ 2015
  • Миронов Виктор Владимирович
  • Миронов Дмитрий Викторович
  • Иванюшин Юрий Андреевич
RU2606847C1
СПОСОБ СТРОИТЕЛЬСТВА МАЛЫХ ГИДРОЭЛЕКТРОСТАНЦИЙ 2014
  • Миронов Виктор Владимирович
RU2567509C1
КОНТРВИХРЕВОЙ ГАСИТЕЛЬ ЭНЕРГИИ ВОДНОГО ПОТОКА 2020
  • Фёдоров Александр Борисович
  • Бойко Владимир Олегович
RU2746415C1
СОСТАВНОЙ МОБИЛЬНЫЙ ДЕРИВАЦИОННЫЙ ВОДОВОД И СПОСОБ ЕГО ВОЗВЕДЕНИЯ 2015
  • Кашарин Денис Владимирович
  • Годин Михаил Александрович
  • Годин Павел Александрович
  • Кашарина Татьяна Петровна
RU2607650C2
ДЕРИВАЦИОННАЯ СКВАЖИННАЯ ГИДРОЭЛЕКТРОСТАНЦИЯ 2010
  • Елисеев Александр Дмитриевич
  • Нескоромных Вячеслав Васильевич
  • Павлюкова Елена Николаевна
RU2431015C1
СПОСОБ ПРЕОБРАЗОВАНИЯ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ПОТОКА ЖИДКОСТИ В КИНЕТИЧЕСКУЮ ЭНЕРГИЮ 1992
  • Даниленко Леонид Васильевич
RU2061897C1
СПОСОБ ГЕНЕРАЦИИ И АККУМУЛИРОВАНИЯ ЭНЕРГИИ 2014
  • Миронов Виктор Владимирович
  • Никифоров Владимир Николаевич
  • Миронов Дмитрий Викторович
  • Иванюшин Юрий Андреевич
RU2577433C2

Иллюстрации к изобретению RU 2 619 131 C1

Реферат патента 2017 года СПОСОБ СООРУЖЕНИЯ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ

Изобретение относится к аэродинамическим трубам и может быть использовано для проведения различных испытаний моделей летательных аппаратов, парашютных систем, тренировки спортсменов в условиях, соответствующих свободному падению в атмосфере, а также в качестве развлекательного аттракциона для граждан. Способ включает возведение аэродинамической камеры, нагнетателей воздуха и силового привода нагнетателей. Силовой привод выполняют в виде гидроагрегатов-генераторов пневматической энергии, напрямую преобразующих энергию потока воды в энергию сжатого воздуха. Гидроагрегаты помещают в русло водотока параллельно скорости движения воды. Полученную гидроагрегатами пневматическую энергию накапливают в пневматических аккумуляторах, из которых поток воздуха направляют в расширители и затем в аэродинамическую камеру. Технический результат заключается в возможности использования для работы трубы энергии, выработанной из возобновляемых источников энергии, природных низконапорных водотоков. 3 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 619 131 C1

1. Способ сооружения аэродинамической трубы, включающий возведение аэродинамической камеры для проведения испытаний различных объектов и тренировок спортсменов или развлечений граждан, нагнетателей воздуха и силового привода нагнетателей, отличающийся тем, что силовой привод выполняют в виде гидроагрегатов-генераторов пневматической энергии, напрямую преобразующих энергию потока воды в энергию сжатого воздуха, помещают гидроагрегаты в русло водотока параллельно скорости движения воды, накапливают полученную гидроагрегатами пневматическую энергию в пневматических аккумуляторах, направляют поток воздуха из пневматических аккумуляторов в расширители воздуха, из расширителей воздух подают в аэродинамическую камеру.

2. Способ сооружения аэродинамической трубы по п. 1, отличающийся тем, что расширители воздуха выполняют в виде детандеров, с которых возможно снимать дополнительную полезную энергию.

3. Способ сооружения аэродинамической трубы по п. 1, отличающийся тем, что пневматические аккумуляторы (ресиверы) теплоизолируют для сохранения высокой температуры сжатого воздуха и предотвращения потерь тепловой энергии, приводящей к обмерзанию расширителя.

4. Способ сооружения аэродинамической трубы по п. 1, отличающийся тем, что воздух подогревают перед расширителями в случае потерь тепловой энергии в ресиверах.

Документы, цитированные в отчете о поиске Патент 2017 года RU2619131C1

СПОСОБ ПРОВЕДЕНИЯ ЗРЕЛИЩНОГО ПРЕДСТАВЛЕНИЯ 2002
  • Савиновский Виталий Георгиевич
RU2295374C2
1971
SU413392A1
АЭРОДИНАМИЧЕСКАЯ ТРУБА 2007
  • Михайлов Николай Константинович
  • Рябоконь Михаил Парфенович
  • Васенко Иван Петрович
  • Мартынов Владимир Александрович
  • Рябкин Александр Гаврилович
RU2349889C1
АЭРОДИНАМИЧЕСКАЯ УСТАНОВКА БОЛЬШИХ ЧИСЕЛ Re 0
SU204628A1

RU 2 619 131 C1

Авторы

Миронов Виктор Владимирович

Иванюшин Юрий Андреевич

Ерофеев Евгений Александрович

Якимова Ирина Викторовна

Даты

2017-05-12Публикация

2015-12-11Подача