Лазерный дальномер с сумматором зондирующих пучков излучения Российский патент 2017 года по МПК G01C3/08 

Описание патента на изобретение RU2620767C1

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.

Известен лазерный дальномер [1], содержащий приемное устройство и передающее устройство, включающее объектив и два лазерных излучателя, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора. Оптический сумматор выполнен в виде поляризационного светоделительного кубика, а оптические оси лазерных излучателей расположены перпендикулярно его смежным граням и взаимно перпендикулярны между собой.

При таком построении оптического сумматора лазерные излучатели разнесены друг относительно друга, что усложняет конструкцию лазерного дальномера, увеличивает его габариты и затрудняет сопряжение оптических осей лазерных излучателей.

Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер, описанный в [2]. Этот лазерный дальномер с оптическим сумматором зондирующих пучков содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы взаимно перпендикулярно и совмещены с помощью оптического сумматора, оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов расположены со стороны одной из ее граней на расстоянии a между ними, связанным с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча.

Особенность полупроводниковых лазерных излучателей - их протяженный характер, обусловленный конфигурацией излучающего р-n перехода. При этом возможны потери энергии зондирующего импульса при измерении дальности до целей с иной формой или при ошибках наведения оси дальномера на цель. Это приводит к уменьшению дальности действия дальномера, особенно по целям, вытянутым в вертикальном (трубы, мачты, столбы) или в горизонтальном (провода, трубопроводы, эстакады) направлении.

Задачей изобретения является наиболее эффективное использование суммарной энергии зондирующего излучения при измерении больших дальностей до целей с малыми угловыми габаритами и соответствующее увеличение дальности действия дальномера.

Указанная задача решается за счет того, что в известном лазерном дальномере, содержащем приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы взаимно перпендикулярно и совмещены с помощью оптического сумматора, оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов закреплены на корпусе дальномера совместно с объективом и двулучепреломляющей пластиной со стороны одной из ее граней на расстоянии a между излучающими площадками, связанном с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча, перпендикулярно к оптической оси объектива введено ступенчатое основание, на котором закреплены лазерные диоды, причем лазерный диод, соответствующий обыкновенному лучу двулучепреломляющей пластины, установлен на дальней от объектива ступеньке основания, и его излучающая площадка расположена на оси объектива, а второй лазерный диод, соответствующий необыкновенному лучу, установлен на ближней к объективу ступеньке, высота которой 0<A*<Ao, где Ao - астигматизм оптической системы, причем фокусное расстояние f объектива соответствует условию f>gmax/ψ, где gmax - максимальный габарит излучающей площадки, ψ - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их максимальном габарите, а положение оптической системы относительно излучающих площадок соответствует условиям A - ϕ2f2/D0<Δf<ϕ1f2/D0, где ϕ1 и ϕ2 - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их минимальном габарите, Δf - смещение фокуса оптической системы относительно ближней к объективу излучающей площадки, А=Аo-А* - остаточный астигматизм оптической системы.

Ступенька на основании может быть выполнена введением подставки толщиной A*, установленной между основанием и лазерным диодом.

На фиг. 1 представлена блок-схема лазерного дальномера. На фиг. 2 - оптическая схема передающего устройства. На фиг. 3 показан ход лучей в передающем устройстве при остаточном астигматизме A и дефокусировке Δf.

Лазерный дальномер (фиг. 1) содержит передающее устройство 1, приемное устройство 2 и блок управления и обработки данных 3. Передающее устройство 1 состоит из двух лазерных излучателей 4 и 5, установленных перед оптическим сумматором 6, за которым установлен объектив 7. Приемное устройство 2 включает последовательно установленные объектив 8 и фотоприемное устройство 9. Входы лазерных излучателей 4, 5 и выход фотоприемного устройства 9 связаны с блоком управления и обработки данных 3.

Передающее устройство (фиг. 2) содержит два излучателя 4 и 5, излучающие площадки которых (р-n переходы лазерных диодов) расположены взаимно перпендикулярно на расстоянии а между ними в поперечном направлении и A* - в продольном. Перед ними могут быть установлены цилиндрические линзы 10 и 11 [2], параллельно направляющие оси пучков лазерного излучения на двулучепреломляющую плоскопараллельную пластину 12, после которой лазерное излучение поступает на объектив 7 передающего устройства 1. Чтобы произошло совмещение пучков лазерного излучения, толщина АВ=h (фиг. 2) двулучепреломляющей плоскопараллельной пластины 12 должна обеспечивать схождение оптических осей лазерных излучателей в одной точке на выходной грани пластины 12. Из фиг. 2 следует, что для этого должно соблюдаться условие

h - толщина пластины;

a - расстояние между оптическими осями лазерных излучателей;

β - угол преломления необыкновенного луча.

Лазерные излучатели 4 и 5 установлены на ступенчатое основание 13. Излучатель 4, соответствующий обыкновенному лучу двулучепреломляющей пластины 12, закреплен на нижней ступеньке основания соосно с объективом 7 на оси OO'. Излучатель 5, соответствующий необыкновенному лучу, установлен на подставку 14 высотой A*, закрепленной на основании 13.

Устройство работает следующим образом.

При поступлении управляющего сигнала от блока управления и обработки данных 3 лазерные излучатели 4 и 5 одновременно излучают лазерные импульсы, причем, направления поляризации пучков выходного излучения перпендикулярны. Пучок излучения от лазерного излучателя 4 распространяется в двулучепреломляющей плоскопараллельной пластине 12 в направлении обыкновенного луча. Пучок излучения от лазерного излучателя 5 с ортогональным направлением поляризации распространяется в двулучепреломляющей плоскопараллельной пластине в 12 направлении необыкновенного луча. На выходной грани двулучепреломляющей плоскопараллельной пластины 12 пучки лазерного излучения совмещаются и через объектив 7 передающего устройства 1 направляются на цель. Отраженное целью излучение через объектив 8 приемного устройства 2 фокусируется на чувствительной площадке фотоприемного устройства 9, на выходе которого формируется электрический импульс, поступающий на блок управления и обработки данных 3, где по задержке между переданным и принятым импульсами определяется дальность до цели.

Удлинение оптического хода обыкновенного OO' и необыкновенного OO'' лучей в плоскопараллельной пластине равно, соответственно,

Δfo=h(no-1)/no и Δfe=h(ne-1)/neCosβ,

где h - толщина пластины, no и ne - показатели преломления обыкновенного и необыкновенного лучей, β - угол между обыкновенным и необыкновенным лучами [3].

Астигматизм оптической системы

При малом значении угла β, имеющем место у известных двулучепреломляющих кристаллов, Cosβ ~ 1 и

Установка излучателей 4 и 5 на разной высоте позволяет скомпенсировать астигматизм полностью или частично. Остаточный астигматизм A=Ao-A*. Остаточный астигматизм может быть целесообразным при зондировании узких целей с поперечным габаритом, сопоставимым с ошибкой наведения оси дальномера, когда наведение узким лучом может грозить промахом. Это возможно при наведении с подвижного основания, например, с борта летательного аппарата в процессе работы системы предупреждения столкновений, включающей лазерный дальномер.

На эквивалентной схеме фиг. 3 показаны изображения 4* и 5* излучающих площадок, приведенные к главной оси дальномера ОО'. Система имеет остаточный астигматизм A и сфокусирована со смещением Δf относительно изображения площадки 4*. Из построений фиг. 3 следует.

Откуда

Пример.

D0=20; f=50; А=0,2; ϕ12=10-3. При этом из (5) и (6) следует

0,075<Δf<0,125.

Таким образом, данное техническое решение с одной стороны позволяет полностью устранить астигматизм, присущий оптическому сумматору такого типа, а с другой - позволяет сохранить остаточный астигматизм, необходимый для создания требуемой диаграммы направленности передающего канала дальномера.

Благодаря указанному построению дальномера обеспечивается решение поставленной задачи - наиболее эффективное использование суммарной энергии зондирующего излучения при измерении больших дальностей до целей с малыми угловыми габаритами и соответствующее увеличение дальности действия дальномера.

Источники информации

1. Патент США №6714285 от 30 марта 2004 г., кл. США 356/4.01.

2. Лазерный дальномер. Патент РФ №2362120 по з-ке 2007145830 от 12.12.2007 г. - прототип.

3. М.И. Апенко, А.С. Дубовик. Прикладная оптика, М.: «Наука», 1971 г. - 392 с.

Похожие патенты RU2620767C1

название год авторы номер документа
Лазерный дальномер с оптическим сумматором излучения 2016
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Михайлов Сергей Сергеевич
  • Моисеев Дмитрий Иванович
  • Судакова Надежда Сергеевна
  • Турикова Галина Владимировна
RU2620768C1
Лазерный дальномер с сумматором зондирующих пучков 2016
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Моисеев Дмитрий Иванович
RU2621476C1
Лазерный дальномер с двулучепреломляющим сумматором излучения 2016
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
RU2619040C1
Лазерный измеритель дальности с оптическим сумматором 2016
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
RU2629684C2
ЛАЗЕРНЫЙ ДАЛЬНОМЕР 2007
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Михайлов Сергей Сергеевич
  • Моисеев Дмитрий Иванович
  • Рябокуль Сергей Борисович
RU2362120C1
Лазерный дальномер 2016
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Михайлов Сергей Сергеевич
  • Моисеев Дмитрий Иванович
  • Судакова Надежда Сергеевна
  • Турикова Галина Владимировна
RU2620765C1
Лазерный дальномер с комбинированным лазерным излучателем 2016
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Моисеев Дмитрий Иванович
RU2618787C1
ЛАЗЕРНЫЙ ДАЛЬНОМЕР 2010
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Казаков Александр Аполлонович
  • Подставкин Сергей Александрович
  • Рябокуль Артем Сергеевич
RU2439492C1
ЛАЗЕРНЫЙ ДАЛЬНОМЕР 2012
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Моисеев Дмитрий Иванович
  • Рябокуль Сергей Борисович
RU2518588C2
Импульсный лазерный дальномер 2021
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
RU2756783C1

Иллюстрации к изобретению RU 2 620 767 C1

Реферат патента 2017 года Лазерный дальномер с сумматором зондирующих пучков излучения

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер с сумматором зондирующих пучков излучения содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора. Оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов закреплены на корпусе дальномера совместно с объективом и двулучепреломляющей пластиной со стороны одной из ее граней на расстоянии а между излучающими площадками, связанным с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча. Перпендикулярно к оптической оси объектива введено ступенчатое основание, на котором закреплены лазерные диоды, причем лазерный диод, соответствующий обыкновенному лучу двулучепреломляющей пластины, установлен на дальней от объектива ступеньке основания, и его излучающая площадка расположена на оси объектива. Второй лазерный диод, соответствующий необыкновенному лучу, установлен на ближней к объективу ступеньке, высота которой 0<A*<Ao, где Ao - астигматизм оптической системы, причем фокусное расстояние f объектива соответствует условию f>gmax/ψ, где gmax - максимальный габарит излучающей площадки, ψ - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их максимальном габарите, а положение оптической системы относительно излучающих площадок соответствует условиям A - ϕ2f2/D0<Δf<ϕ1f2/D0, где ϕ1 и ϕ2 заданная максимальная расходимость излучения от первой и второй излучающих площадок в их минимальном габарите, Δf - смещение фокуса оптической системы относительно ближней к объективу излучающей площадки, А=Аo-A* - остаточный астигматизм оптической системы. Технический результат изобретения состоит в наиболее эффективном использовании суммарной энергии зондирующего излучения при измерении больших дальностей и соответствующем увеличении дальности действия дальномера. 1 з.п. ф-лы и 3 ил.

Формула изобретения RU 2 620 767 C1

1. Лазерный дальномер с сумматором зондирующих пучков излучения, содержащий приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы взаимно перпендикулярно и совмещены с помощью оптического сумматора, оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов закреплены на корпусе дальномера совместно с объективом и двулучепреломляющей пластиной со стороны одной из ее граней на расстоянии а между излучающими площадками, связанном с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча, отличающийся тем, что перпендикулярно к оптической оси объектива введено ступенчатое основание, на котором закреплены лазерные диоды, причем лазерный диод, соответствующий обыкновенному лучу двулучепреломляющей пластины, установлен на дальней от объектива ступеньке основания, и его излучающая площадка расположена на оси объектива, а второй лазерный диод, соответствующий необыкновенному лучу, установлен на ближней к объективу ступеньке, высота которой 0<А*<Ao, где Ao - астигматизм оптической системы, причем фокусное расстояние f объектива соответствует условию f>gmax/ψ, где gmax - максимальный габарит излучающей площадки, ψ - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их максимальном габарите, а положение оптической системы относительно излучающих площадок соответствует условиям А-ϕ2f2/D0<Δf<ϕ1f2/D0, где ϕ1 и ϕ2 заданная максимальная расходимость излучения от первой и второй излучающих площадок в их минимальном габарите, Δf - смещение фокуса оптической системы относительно ближней к объективу излучающей площадки, А=Ao-А* - остаточный астигматизм оптической системы.

2. Лазерный дальномер по п. 1, отличающийся тем, что ступенька на основании выполнена введением подставки толщиной А*, установленной между основанием и лазерным диодом.

Документы, цитированные в отчете о поиске Патент 2017 года RU2620767C1

Электронно-оптический способ измерения расстояний 1982
  • Гюнашян Карлен Самвелович
  • Илясов Вячеслав Вениаминович
  • Чирков Леонид Евгеньевич
  • Айрапетян Егисабет Акоповна
SU1080012A1
ЛАЗЕРНЫЙ ДАЛЬНОМЕР 2007
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Михайлов Сергей Сергеевич
  • Моисеев Дмитрий Иванович
  • Рябокуль Сергей Борисович
RU2362120C1
ОПТИЧЕСКИЙ ОТРАЖАТЕЛЬ (ВАРИАНТЫ) 2013
  • Васильев Владимир Павлович
RU2556744C2
US 20030164937 A1, 04.09.2003.

RU 2 620 767 C1

Авторы

Вильнер Валерий Григорьевич

Волобуев Владимир Георгиевич

Даты

2017-05-29Публикация

2016-02-12Подача