Изобретение относится к области антенной техники сверхвысокочастотного (СВЧ) диапазона и предназначено для использования в радиотехнических системах различного назначения в качестве самостоятельной широкополосной антенны, либо в качестве широкополосного облучателя зеркальной антенны.
Известна рупорная антенна, используемая в качестве широкополосного облучателя зеркальной антенны (Труды НИИР №3, «Антенно-фидерные устройства и техника СВЧ», стр. 25, г. Москва, «Радио и связь», 1990 г.), содержащая рупор с решетчатыми боковыми стенками в Н-плоскости и сплошными стенками в Е-плоскости, внутри которого в плоскости Е расположены две экспоненциально расширяющиеся ножевые пластины, и узел возбуждения в виде Н-волновода.
Такое выполнение рупорной антенны расширяет диапазон рабочих частот. Однако при этом не реализуется потенциально достижимая степень согласования антенны с питающим фидером. Кроме того, не обеспечивается идентичность ширины диаграммы направленности (ШДН) в ортогональных плоскостях и ее постоянство в рабочем диапазоне частот. Ширина диаграммы направленности такой рупорной антенны с ростом частоты уменьшается. При использовании такой антенны в качестве облучателя зеркальной антенны коэффициент использования поверхности зеркала с ростом частоты снижается, растут энергетические потери из-за недооблучения.
Известна рупорная антенна (АС №1626291 A1, H01Q 13/02), содержащая рупор с решетчатыми боковыми стенками, узел возбуждения в виде Н-волновода и два экспоненциальных Н-образных выступа, выполненных с увеличивающейся к раскрыву рупора шириной S до размера S=10t, где t - ширина выступа в Н-волноводе.
Такое выполнение рупорной антенны улучшает согласование ее с питающим фидером и повышает идентичность ширины диаграммы направленности в ортогональных плоскостях. Однако частотная зависимость ширины диаграммы направленности остается по-прежнему достаточно значительной.
Наиболее близкой по технической сущности к заявляемому изобретению является выбранная в качестве прототипа рупорная антенна (патент №2302062 С2, H01Q 13/02), содержащая рупор с решетчатыми боковыми стенками, узел возбуждения в виде Н-волновода и два экспоненциальных Н-образных выступа, выполненных с увеличивающейся к раскрыву рупора шириной S до размера S=10t, где t - ширина выступа в Н-волноводе, решетчатые боковые стенки выполнены в виде стержней диаметром D=0,1-0,11λмакс, где λмакс - максимальная длина волны рабочего диапазона, расстояние d между стержнями изменяется от первого стержня, расположенного в раскрыве рупора, по закону геометрической прогрессии со знаменателем τ=0,7-0,73, а длина стержней l изменяется по тому же закону со знаменателем g=0,895-0,905, т.е. dn+1=dnτ и ln+1=lng, где n - порядковый номер стержня. Верхняя и нижняя поверхности рупора имеют излом в точках крепления стержней.
Целью изобретения является повышение идентичности ширины диаграммы направленности во всем диапазоне рабочих частот как на вертикальной, так и на горизонтальной поляризации за счет введения в известную конструкцию дополнительных экспоненциальных выступов и изменения формы стенок рупора.
Цель достигается тем, что в известную конструкцию рупорной антенны, содержащую рупор с решетчатыми боковыми стенками, узел возбуждения в виде Н-волновода и два экспоненциальных выступа, выполненных с увеличивающейся к раскрыву рупора шириной S до размера S=10t, согласно изобретению введены два дополнительных экспоненциальных выступа, заменяющие решетчатые стенки, все выступы имеют экспоненциальную форму, описываемую соотношением:
Также на выступах имеются срезы под углом 45° от точек питания, а стенки рупора имеют кривизну, повторяющую форму выступов.
Фиг. 1 - Общий вид гребенчатой биортогональной рупорной антенны, где обозначены:
1 - рупор;
2 - экспоненциальные выступы;
3 - стенки рупора;
4 - скос под углом 45° от точки питания.
Фиг. 2 - Ширина диаграммы направленности по уровню - 3 дБ в Е и Н плоскостях в диапазоне частот от 8 до 18 ГГц.
Фиг. 3 - Ширина диаграммы направленности по уровню - 6 дБ в Е и Н плоскостях в диапазоне частот от 8 до 18 ГГц.
Фиг. 4 - Ширина диаграммы направленности по уровню - 10 дБ в Е и Н плоскостях в диапазоне частот от 8 до 18 ГГц.
Фиг. 5, 6 - Фото экспериментального образца.
Конструктивно антенна содержит (фиг. 1) рупор 1 с четырьмя экспоненциальными выступами 2 и сплошными стенками, повторяющими форму выступов 3, выступы выполнены со скосами 45° от точки питания 4. Стенки и выступы имеют форму, описываемую соотношением:
Такая конструкция рупорной антенны позволяет обеспечить стабилизацию ширины диаграммы направленности в рабочей полосе частот, а симметричность данной конструкции позволяет обеспечить прием электромагнитных волн как вертикальной, так и горизонтальной поляризации, т.е. выполняется условие биортогональности.
Гребенчатая биортогональная рупорная антенна работает следующим образом.
Коаксиальный переход подводит связанные электромагнитные колебания к выступам 2, запитывая противолежащие выступы 2 в противофазе. Связанные электромагнитные колебания распространяются вдоль выступов в направлении раскрыва рупора. Экспоненциально растущее сопротивление противолежащих выступов приводит к возникновению свободных электромагнитных колебаний, которые распространяются в разные стороны от выступов 2, экспоненциальные стенки отражают дошедшие от выступов 2 свободные электромагнитные колебания в сторону раскрыва рупора. В результате излучения выступов 2 и отражения свободных электромагнитных колебаний формируется поле гребенчатой биортогональной рупорной антенны. Экспоненциальные стенки и выступы 2 позволяют сформировать подобные распределения электромагнитного поля в широком диапазоне частот.
Амплитудно-фазовое распределение результирующего поля в дальней зоне существенно зависит от соотношения полей, излучаемых раскрывом рупора, и, прежде всего, от рассеянного выступами 2 электромагнитного поля. В свою очередь рассеянное выступами 2 электромагнитное поле существенно зависит от ширины выступов рупора, их длины и формы изгиба. Варьируя этими значениями, можно подобрать такие их величины, при которых диаграмма направленности антенны будет оставаться практически постоянной в диапазоне рабочих частот.
Экспериментальные исследования показали, что оптимальной, с точки зрения стабилизации ширины диаграммы направленности в рабочей полосе частот и идентичности диаграмм направленности (ДН) в ортогональных плоскостях, является предложенная форма выступов и стенок рупора. При изменении толщины выступов наблюдается значительная частотная зависимость ШДН.
На фиг. 2, фиг. 3 и фиг. 4 представлены графики зависимости измеренных ширины диаграммы направленности гребенчатого рупора в Е и Н плоскостях по уровню - 3 дБ, - 6 дБ и - 10 дБ соответственно. Их анализ показывает, что в рабочей полосе частот ширина диаграммы направленности изменяется относительно ее среднего значения не более чем на ±7%, в то время как у рупорной антенны-прототипа эта величина составляет ±11%.
Сопоставительный анализ технического решения с устройством, выбранным в качестве прототипа, показывает, что новизна технического решения заключается в введении в заявленное устройство дополнительных выступов отличной от прототипа формы, также в изменении формы стенок рупора и в введении второй точки питания.
Таким образом, заявляемое техническое решение соответствует критерию изобретения «новизна».
Анализ известных технических решений в исследуемой и смежных областях позволяет сделать вывод о том, что введение четырех выступов в рупор является известным решением. Однако использование специальной формы таких выступов, а также кривизны стенок рупора и двух точек питания придает устройству новые свойства. Введенные изменения позволяют получить стабилизированную диаграмму направленности в рабочем диапазоне частот как на горизонтальной, так и на вертикальной поляризации, а также обеспечить широкополостность рупора.
Таким образом, техническое решение соответствует критерию "изобретательский уровень", т.к. оно для специалиста явным образом не следует из уровня техники.
Изобретение относится к области антенной техники СВЧ диапазона и предназначено для использования в радиотехнических системах различного назначения в качестве самостоятельной широкополосной антенны, либо в качестве широкополосного облучателя зеркальной антенны.
Таким образом, изобретение соответствует критерию "промышленная применимость".
Предложенное техническое решение позволяет при использовании гребенчатой биортогональной рупорной антенны, в качестве облучателя зеркальной антенны, обеспечить эффективное облучение ее отражателя в рабочей полосе частот и тем самым повысить энергетический потенциал антенной системы в целом.
название | год | авторы | номер документа |
---|---|---|---|
РУПОРНАЯ АНТЕННА | 2005 |
|
RU2302062C2 |
ДВУХДИАПАЗОННЫЙ ОБЛУЧАТЕЛЬ С ЛИНЕЙНОЙ ПОЛЯРИЗАЦИЕЙ ПОЛЯ | 2023 |
|
RU2809476C1 |
ШИРОКОПОЛОСНАЯ МНОГОЛУЧЕВАЯ ЗЕРКАЛЬНАЯ АНТЕННА | 2007 |
|
RU2342748C1 |
МНОГОЛУЧЕВАЯ ЗЕРКАЛЬНАЯ АНТЕННА | 2010 |
|
RU2435262C1 |
Широкополосная расфазированная рупорная антенна Бобкова | 2021 |
|
RU2776726C1 |
ОБЛУЧАТЕЛЬ ЗЕРКАЛЬНЫХ И ЛИНЗОВЫХ АНТЕНН И УСТРОЙСТВО ДЛЯ ЕГО ГЕРМЕТИЗАЦИИ | 2004 |
|
RU2260884C1 |
Двухдиапазонный облучатель с комбинированным преобразователем мод | 2018 |
|
RU2680424C1 |
РУПОРНАЯ АНТЕННА | 2018 |
|
RU2685080C1 |
ШИРОКОПОЛОСНАЯ ЧЕТЫРЕХЛУЧЕВАЯ ЗЕРКАЛЬНАЯ АНТЕННА (ВАРИАНТЫ) | 1994 |
|
RU2099836C1 |
СВЕРХШИРОКОПОЛОСНАЯ МНОГОЛУЧЕВАЯ ЗЕРКАЛЬНАЯ АНТЕННА | 2013 |
|
RU2541871C2 |
Изобретение относится к области антенной техники СВЧ диапазона и предназначено для использования в радиотехнических системах различного назначения в качестве самостоятельной широкополосной антенны, либо в качестве широкополосного облучателя зеркальной антенны. Антенна содержит рупор 1 с четырьмя экспоненциальными выступами 2 и сплошными стенками, повторяющими форму выступов 3, выступы выполнены со скосами 45° от точки питания 4. Стенки и выступы имеют форму, описываемую соотношением:
Введены два дополнительных выступа со скосами 45° от точки питания, а также выполнение стенок рупора в форме повторяющей форму выступов, симметричность горловины рупора и расположения экспоненциальных выступов позволяет обеспечить прием электромагнитных волн как вертикальной, так и горизонтальной поляризации. Технический результат заключается в повышении идентичности ширины диаграммы во всем диапазоне рабочих частот как на вертикальной, так и на горизонтальной поляризации за счет введения в известную конструкцию дополнительных экспоненциальных выступов, второй точки питания и изменения формы стенок рупора. 6 ил.
Гребенчатая биортогональная рупорная антенна, содержащая рупор с экспоненциальными выступами и сплошными стенками, повторяющими форму выступов, отличающаяся тем, что введены два дополнительных экспоненциальных выступа, при этом стенки и выступы имеют форму, описываемую соотношением
,
также введена вторая точка питания, а выступы выполнены со скосами 45° от точек питания, при этом выступы расположены симметрично друг относительно друга, горловина рупора имеет симметричную форму.
РУПОРНАЯ АНТЕННА | 2005 |
|
RU2302062C2 |
Рупорная антенна | 1988 |
|
SU1626291A1 |
ШИРОКОПОЛОСНЫЙ ВОЛНОВОДНО-РУПОРНЫЙ ИЗЛУЧАТЕЛЬ | 2003 |
|
RU2237954C1 |
US 4021814 A, 03.05.1977. |
Авторы
Даты
2017-05-30—Публикация
2016-02-10—Подача