Изобретение относится к авиационной и ракетно-космической технике, в частности к способам управления аэродинамическими характеристиками маневрирующих в атмосфере сверхзвуковых летательных аппаратов (ЛА) на основе управления их обтеканием.
В настоящее время известны способы управления движением сверхзвуковых ЛА, основанные на изменении их обтекания с помощью механического отклонения управляющих элементов (щитки, элероны, триммеры), выдвижения из носовой части набора стержней, выдува в набегающий поток газовых струй с поверхности ЛА. Эти методы предполагают наличие в ЛА движущихся частей и сервомеханизмов движения элементов управления, либо двигателей для создания напора струй и управляемых задвижками каналов подвода к поверхности струйного газа. Это существенно усложняет конструкцию ЛА, увеличивает время выполнения маневра и увеличивает необходимый для функционирования систем управления внутренний объем. Для маневрирующих малоразмерных сверхзвуковых аппаратов предпочтительными являются методы управления обтеканием без механических движущихся частей и использующие электронное приведение в действие управляющего воздействия.
Наиболее близким к предлагаемому изобретению является способ управления обтеканием, описанный в патенте РФ №2559193 С1, МПК В64 21/04, В64 19/00, опубл. 10.08.2014 [1], который принят за прототип и в котором используется изменение направления набегающего потока со встречного на радиальное истечение относительно продольной оси ЛА с использованием газопроницаемых высокопористых материалов, расположенных в потоке в передней части корпуса ЛА. Включение управляющего воздействия здесь осуществляется симметричным или несимметричным нагревом пористого материала тлеющим электрическим разрядом, беспламенным каталитическим горением на поверхности пор или с помощью омического нагревателя. В частности, увеличение силы сопротивления здесь обеспечивается симметричным нагревом пористого материала, а боковые усилия - несимметричным нагревом. Это изобретение в наибольшей степени реализует идею немеханического, без расхода массы управления обтеканием и направлено на применение в малоразмерных сверхзвуковых ЛА.
При всех достоинствах вышеупомянутого изобретения его существенным недостатком являются применяемые методы нагрева передней пористой вставки. Электрический тлеющий разряд может существовать только в определенном диапазоне плотности и скорости течения воздуха в порах материала. Это ограничивает диапазон высоты полета ЛА, где электрический разряд может использоваться и, кроме того, делает весьма неоднородным нагрев материала вставки.
Использование каталитического беспламенного горения предполагает наличие в конструкции ЛА запасов горючего газа и систем подвода и регулирования подачи газа в переднюю пористую вставку в соответствии со скоростью и высотой полета ЛА. Такая система может быть реализована на крупногабаритных ЛА, но для малоразмерных маневрирующих ЛА она труднореализуема.
Омический нагрев пористого материала специальными нагревательными элементами, как в прототипе, не зависит от условий обтекания ЛА, но распределение энергии нагрева в большой степени зависит от теплопроводности материала пористой вставки. В силу большой величины пористости передача тепла может осуществляться только по тонким элементам материала скелета пористой вставки, что ограничивает величину подвода тепловой энергии в пористый материал от нагревательных элементов. В условиях сверхзвукового обтекания это приводит к существенной неоднородности поля температуры во вставке и большим ее значениям только вблизи нагревательных элементов.
Технический результат изобретения состоит в том, чтобы обеспечить равномерный по объему подвод энергии для нагревания материала передней пористой вставки, вне зависимости от условий обтекания (высоты и скорости полета ЛА). В данном варианте технической реализации изобретения удается обеспечить равномерный подвод энергии в газопроницаемый пористый материал в режиме симметричного нагрева пористой вставки, что обеспечивает управление силой сопротивления ЛА.
Для достижения этого технического результата в предлагаемом способе используется специальный режим электрического индукционного нагрева передней пористой вставки, заключенной в индукционную катушку, соединенную с высокочастотным генератором электрического тока. Нагревание газопроницаемой пористой вставки осуществляется токами Фуко, наводимыми в электропроводящем материале пористой вставки переменным магнитным полем индукционной катушки, при этом для однородного по объему пористой вставки нагрева необходимо условие, чтобы эффективная глубина проникновения магнитного поля во вставку δ была значительно больше радиуса вставки R, что должно учитываться при определении частоты переменного тока индукционного нагрева.
Подводимая к пористой вставке электрическая мощность не зависит от условий обтекания и равномерно распределяется по ее объему. Изменение мощности индукционного нагрева позволяет изменять температуру передней пористой вставки и, следовательно, величину аэродинамического сопротивления ЛА.
Сравнительный анализ предлагаемого способа нагрева передней пористой вставки с прототипом показывает, что использование индукционного нагрева обеспечивает независимость нагревания от условий обтекания, однородность по пространству подаваемой в пористый материал электрической мощности и не требует наличия запасов горючего газа в ЛА, что обеспечивает создание управляющих аэродинамических сил и упрощает конструкцию ЛА.
Предлагаемый способ нагрева газопроницаемых пористых вставок поясняется чертежом, представленным на фиг. 1.
На фиг. 1. - схема управления обтеканием носовой части ЛА при помощи индукционного нагрева передней пористой вставки. Показан вид сбоку.
На схеме фиг. 1 показаны набегающий поток 1, головная ударная волна 2, пористая вставка 3, нагреваемая токами Фуко, создаваемыми индукционной катушкой 4. Пористая вставка 3 изолирована от корпуса 5 ЛА теплоизолятором 6. Индукционная катушка утоплена в пористый материал и электрически изолирована от него.
Предлагаемый способ осуществляется следующим образом.
Для осуществления торможения ЛА за счет увеличения его волнового сопротивления в заданный момент времени на индукционную катушку, охватывающую переднюю газопроницаемую вставку, от генератора подается переменный ток, создающий переменное во времени магнитное поле. Это поле пронизывает материал вставки и наводит в пористом материале токи Фуко, которые однородно нагревают материал пористой вставки. Этот нагрев приводит к торможению набегающего потока в порах материала и увеличению сопротивления ЛА в целом. После отключения генератора вставка охлаждается набегающим потоком, и начальное сопротивление ЛА восстанавливается.
Для однородного по объему пористой вставки нагрева в этом способе необходимо условие, чтобы эффективная глубина проникновения магнитного поля во вставку δ была значительно больше радиуса вставки R. Величина δ определяется из соотношения [2]
Здесь с - скорость света; ƒ - частота переменного тока в индукционной катушке; σ - эффективная удельная электропроводимость пористой вставки. Из этого выражения находят необходимую частоту переменного тока в индукционной катушке f<<С2/R2σ.
Для высокопористых металлических пористых материалов величина σ меньше собственной величины удельной электропроводимости металлов σ0, из которых изготовлен пористый материал, и может быть оценена из соотношения σ≅(1-ε)⋅σ0. Здесь ε - величина пористости материала. Это связано с тем, что электрические токи Фуко могут проходить только по перемычкам пор скелета пористого материала, а их доля соответствует величине пористости.
Так для ячеисто-пористого никеля с пористостью 95% эффективная удельная электропроводимость будет примерно равна величине 6⋅105 Ом-1⋅м-1, что позволяет использовать для однородного нагрева переменный ток с частотой менее 100 МГц. Для защиты корпуса и оборудования ЛА от нагревания переменным магнитным полем поверхность переднего конца корпуса ЛА необходимо покрывать тонким слоем металла с высокой удельной электропроводимостью, например медью или алюминием, и использовать частоту тока нагрева, близкую к верхней границе частотного диапазона.
В ранее проведенных в ИТПМ СО РАН исследованиях: Миронов С.Г. Маслов А.А., Цырюльников И.С. Управление аэродинамическими силами с помощью газопроницаемых пористых материалов // Письма в ЖТФ. 2014. Т. 40, вып. 19. С. 83-88 [3]; Миронов С.Г., Маслов А.А., Кириловский С.В., Поплавская Т.В. Моделирование фильтрации воздуха в высокопористых ячеистых материалах. Влияние нагрева материала // Труды XIV Всероссийского семинара «Динамика многофазных сред», приуроченного к 75-летию академика В.М. Фомина. 2-5 ноября 2015. Новосибирск. С. 292-294 [4] была экспериментально и численно показана высокая эффективность управления сопротивлением течению воздуха в порах ячеисто-пористого материала с помощью нагревания материала различными электрическими методами (электрический тлеющий разряд, омическое нагревание), что позволило на этой основе предложить индукционный метод нагревания металлических пористых материалов применительно к сверхзвуковым ЛА.
Предлагаемый способ управления сверхзвуковым обтеканием путем индукционного нагрева передней пористой вставки может быть использован при разработке и проектировании возвращаемых космических аппаратов, высотных гиперзвуковых летательных аппаратов, осуществляющих управляемое сверхзвуковое движение в атмосфере, а также при разработке новых элементов боевого оснащения ракет.
Источники информации
1. Патент РФ №2559193 С1, МПК В64 21/04, В64 19/00, опубл. 10.08.2014.
2. Физическая энциклопедия. Т. 4. М.: Изд-во «Большая Российская энциклопедия» 1994. С. 541.
3. Миронов С.Г. Маслов А.А., Цырюльников И.С. Управление аэродинамическими силами с помощью газопроницаемых пористых материалов // Письма в ЖТФ. 2014. Т. 40, вып. 19. С. 83-88.
4. Миронов С.Г., Маслов А.А., Кириловский С.В., Поплавская Т.В. Моделирование фильтрации воздуха в высокопористых ячеистых материалах. Влияние нагрева материала // Труды XIV Всероссийского семинара «Динамика многофазных сред», приуроченного к 75-летию академика В.М. Фомина. 2-5 ноября 2015. Новосибирск. Россия. С. 292-294.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УПРАВЛЕНИЯ ОБТЕКАНИЕМ СВЕРХЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 2014 |
|
RU2559193C1 |
СПОСОБ УПРАВЛЕНИЯ ОБТЕКАНИЕМ ЛЕТАТЕЛЬНЫХ АППАРАТОВ | 2004 |
|
RU2283794C2 |
ГИПЕРЗВУКОВОЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ | 1999 |
|
RU2172278C2 |
Крыло сверхзвукового летательного аппарата | 2022 |
|
RU2790996C1 |
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ОБТЕКАНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА | 1990 |
|
RU2173285C2 |
СПОСОБ УПРАВЛЕНИЯ ОБТЕКАНИЕМ ЛЕТАТЕЛЬНОГО АППАРАТА | 1990 |
|
RU2173657C2 |
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ОБТЕКАНИЕМ ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 2004 |
|
RU2268847C1 |
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ СТЕПЕНИ НЕОДНОРОДНОСТИ ЭЛЕКТРОПРОВОДИМОСТИ НЕМАГНИТНЫХ МЕТАЛЛОВ ВИХРЕТОКОВЫМ МЕТОДОМ | 2019 |
|
RU2713031C1 |
СПОСОБ ИЗМЕНЕНИЯ ФОРМЫ ПРОФИЛЯ НЕСУЩЕЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА | 1998 |
|
RU2156207C2 |
Способ работы ракетного двигателя малой тяги | 2015 |
|
RU2637787C2 |
Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Управление обтеканием основывается на изменении направления набегающего воздушного потока со встречного на радиальное истечение относительно ЛА с использованием нагреваемой по команде газопроницаемой пористой вставки на переднем конце ЛА. Нагрев газопроницаемой пористой вставки осуществляется с помощью электрического индукционного нагрева. Изобретение направлено на упрощение системы воздействия на поток и повышение быстродействия управления обтеканием. 1 ил.
Способ управления обтеканием сверхзвукового летательного аппарата набегающим воздушным потоком при его движении во внешней среде, включающий изменение направления воздушного потока со встречного на радиальное истечение относительно летательного аппарата с использованием нагреваемых передних пористых газопроницаемых вставок для создания управляемой величины силы сопротивления движению, отличающийся тем, что осуществляют однородный по объему подвод тепла к пористой вставке с помощью электрического индукционного нагрева, при этом частоту переменного тока индукционного нагрева определяют из условия, чтобы эффективная глубина проникновения магнитного поля в пористую вставку δ была значительно больше радиуса вставки
где f - частота переменного тока индукционного нагрева, С - скорость света, R - радиус пористой вставки, σ - эффективная удельная электропроводимость пористой вставки, которую оценивают из соотношения σ≅(1-ε)⋅σ0, где σ0 - удельная электропроводимость металла пористой вставки, ε - величина пористости вставки, а поверхность переднего конца корпуса летательного аппарата покрывают тонким слоем металла с высокой удельной электропроводимостью.
СПОСОБ УПРАВЛЕНИЯ ОБТЕКАНИЕМ СВЕРХЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 2014 |
|
RU2559193C1 |
JP 7035413 A, 07.02.1995 | |||
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Авторы
Даты
2017-06-01—Публикация
2015-12-16—Подача