СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2017 года по МПК F24F3/00 B03C3/00 

Описание патента на изобретение RU2621386C1

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д.

Известно устройство для вентиляции воздуха, содержащее коронирующие и осадительные электроды, расположенные параллельно потоку газа, подключенные к источнику высокого напряжения, одна сторона коронирующего электрода является коронирующей в направлении воздушного потока, при этом осадительные электроды выполнены в виде сплошных пластин [1].

Недостатками этого устройства являются: большая потребляемая мощность, необходимость увеличение габаритов электродной системы для увеличения максимальной скорости электрического ветра, малая скорость электрического ветра.

Известен вентилятор-озонатор, включающий корпус, внутри которого расположены несколько рядов пластинчатых электродов, выполненных в аэродинамически профилированном виде с прикрепленными острийными излучателями [2].

Недостатками этого устройства являются сложная конструкция электродов, выполненных в аэродинамически профилированном виде, где к заостренному ребру каждой пластины прикреплены стержневые острийные излучатели, и низкая скорость воздушного потока (не более 1,08 м/с).

Наиболее близким по технической сущности и достигаемому эффекту является способ увеличения скорости электрического ветра, заключающийся в подаче высокого напряжения на электроды с излучателями, расположенными рядами параллельно потоку газа [3].

Недостатками данного способа являются большие габариты электродной системы, т.к. для увеличения скорости электрического ветра увеличивается число ступеней ускоряющих электродов и мощность, невысокий КПД.

Основным техническим результатом предлагаемого изобретения является увеличение скорости электрического ветра и увеличение КПД.

Технический результат достигается тем, что последовательно с постоянным напряжением подается импульсное напряжение, при этом частота импульсов выбирается из диапазона от 0 до 30 кГц, а длительность импульса выбирается значительно меньше периода следования импульсов, при этом источник постоянного напряжения подключен через токоограничивающий элемент к электродам, а параллельно электродам, после токоограничивающего элемента, через конденсатор подключен генератор высоковольтных импульсов.

На фиг. 1 приведена схема устройства для комбинированного питания постоянным и импульсным напряжением, где ГВИ - генератор высоковольтных импульсов, ЭС - электродная система, ИПН - источник постоянного напряжения. Комбинированное напряжение питания - это такой вид напряжения, когда на постоянное напряжение накладывается импульсное. На фиг. 2 показана форма и параметры комбинированного напряжения. На фиг. 3 и фиг. 4 приведены экспериментальные зависимости скорости воздушного потока от параметров комбинированного напряжения для одноступенчатой электродной системы с межэлектродным расстоянием d=15 мм. На фиг. 5 представлены графики зависимости КПД от скорости воздушного потока для различных видов питающего напряжения.

Примером конкретной реализации заявляемого способа увеличения скорости электрического ветра является устройство, представленное на фиг. 1. Устройство содержит электродную систему (ЭС) и источник питания. Источник питания состоит из ИПН и генератора высоковольтных импульсов ГВИ, на выходе которого стоит повышающий трансформатор Т1 с коэффициентом трансформации n.

Токоограничивающий элемент R1, в качестве которого может использоваться резистор или индуктивность, ограничивает ток при возникновении искрового пробоя в электродной системе (ЭС) и защищает ИПН от короткого замыкания. Разделительный конденсатор С1 должен иметь достаточную емкость, чтобы передавать импульс в нагрузку без искажения. Для устранения взаимного влияния ГВИ и ИПН может устанавливаться последовательно с R1 высоковольтный диод.

Конструкция электродной системы (ЭС) состоит из нескольких рядов пластинчатых электродов, расположенных на расстоянии d друг от друга. Коронирующие стороны всех электродов расположены в одном направлении, что обеспечивает генерацию однонаправленного потока воздуха.

Устройство работает следующим образом. На соседние ряды электродов подается напряжение от ИПН через R1, и параллельно им, через конденсатор С1, прикладывается импульсное напряжение от ГВИ, определенной полярности, чтобы происходило сложение постоянного напряжения от ИПН и импульсного - от ГВИ (фиг. 1).

Постоянное напряжение, поступающее с ИПН, заряжает конденсатор С1 до напряжения U2, которое прикладывается к электродной системе ЭС. При подаче импульса с ГВИ через первичную обмотку трансформатора Т1 начинает протекать ток. Возникшее напряжение на вторичной обмотке имеет такую полярность, что складывается с напряжением на конденсаторе (фиг. 2). В схеме фиг. 1 показан случай, когда постоянное и импульсное напряжение имеют положительную полярность.

Наличие постоянного напряжения обеспечивает стационарное распределение электрического поля в газоразрядном промежутке d, за счет чего происходит перемещение образовавшихся ионов. Импульсное напряжение приводит к увеличению количества ионов и вследствие малой длительности не оказывает существенное влияние на скорость ионов.

За счет коротких импульсов напряжения (tu<<Т) большой амплитуды происходит увеличение количества ионов, что приводит к увеличению работы, производимой полем по перемещению заряда W=q⋅U, где q - суммарный заряд ионов в промежутке между соседними рядами электродов; U - разность потенциалов газоразрядного промежутка (d). Заряд однозарядных ионов зависит от количества и находится по формуле: q=e⋅N, где е - величина элементарного заряда; N - количество ионов. Ионы, ускоренные в электрическом поле, сталкиваясь с нейтральными молекулами и атомами воздуха, передают им свою кинетическую энергию. Таким образом, чем больше заряд, тем большую работу совершает поле и тем больше энергии передается нейтральным молекулам и атомам воздуха и тем больше скорости электрического ветра.

Экспериментально было установлено (фиг. 3), что увеличение скорости воздушного потока происходит при увеличении частоты следование импульсов в диапазоне от 0 до 30 кГц.

В отличие от прототипа, где электродная система питается только постоянным напряжением в предлагаемом устройстве, за счет использования комбинированного напряжения, можно повысить максимальную скорость электрического ветра, не изменяя конфигурацию электродной системы (без добавления дополнительных ускоряющих ступеней).

Вследствие нелинейной вольт-амперной характеристики коронного разряда, при напряжениях питания, близких к предпробойным, происходит резкое снижение КПД, т.к. с увеличением напряжения потребляемая мощность возрастает быстрее, чем увеличивается скорость электрического ветра. Поэтому наиболее выгодно питать электродную систему комбинированным напряжением при значении постоянного напряжения ниже предпробойного, а амплитудой импульсного напряжения и частотой - регулировать скорость воздушного потока.

Проведенные эксперименты показали, что скорость электрического ветра не изменяется при увеличении длительности импульсного напряжения в диапазоне от 250 нс до 2 мкс, возрастает только потребляемая мощность импульсного генератора. Минимальная длительность была ограничена возможностями генератора.

Увеличение частоты импульсов приводит к увеличению скорости электрического ветра (фиг. 3). Однако при частоте импульсов напряжения более 30 кГц происходит дальнейший рост потребляемой мощности, а скорость воздушного потока остается неизменной, что приводит к снижению КПД устройства.

На фиг. 4 представлены экспериментальные зависимости скорости электрического ветра от амплитуды импульсного напряжения (частота импульсов во всех случаях 15 кГц), для различных значений постоянного напряжения. С увеличением амплитуды импульсов происходит увеличение скорости воздушного потока, при любом значении постоянного напряжения.

На фиг. 5 показаны зависимости КПД от скорости воздушного потока для различных видов питающего напряжения: только постоянное напряжение, комбинированное для двух случаев. Скорость воздушного потока в первом случае увеличивается за счет увеличения постоянного напряжения. В случаях с комбинированным питанием - устанавливалось значение постоянного напряжения 10 кВ и 15кВ и скорость увеличивалась за счет увеличения амплитуды импульсного напряжения при фиксированной частоте 15 кГц.

КПД определялось как отношение энергии воздушного потока к энергии, вводимой в коронный разряд. Из фиг. 5 видно, что КПД больше у устройства, питающегося комбинированным напряжением, и увеличивается с увеличением амплитуды импульсного напряжения.

Кроме того, комбинированное питание позволяет увеличить надежность устройства за счет того, что отсутствуют искровые пробои газоразрядного промежутка электродной системы при изменении параметров внешней среды: влажность, давление, запыленность, наличие аэрозольных частиц. Для этого необходимо установить минимальный уровень постоянного напряжения, при котором начинает устойчиво гореть коронный разряд, а амплитудой импульсного напряжения задавать скорость воздушного потока. Вследствие малой длительности импульсов напряжения - пробой промежутка не наступает.

Список литературы

1. Патент №2492394 С2, кл. F24F 3/00.

2. Патент №2121115 С1, кл. F24F 3/16.

3. Патент №2313732 С2, кл. F24F 3/16.

Похожие патенты RU2621386C1

название год авторы номер документа
СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА 2016
  • Верещагин Николай Михайлович
  • Васильев Владимир Владимирович
RU2656970C2
СПОСОБ ФОРМИРОВАНИЯ НАПРЯЖЕНИЯ СЛОЖНОЙ ФОРМЫ 2020
  • Верещагин Николай Михайлович
  • Коровин Алексей Александрович
RU2763869C1
УСТРОЙСТВО ПИТАНИЯ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ С РАЗРЯДНЫМИ КОРОНООБРАЗУЮЩИМИ ЭЛЕКТРОДАМИ 1997
  • Бочков Виктор Дмитриевич
  • Зыков Александр Максимович
  • Гнедин Игорь Николаевич
  • Колчин Константин Игоревич
RU2113909C1
ИМПУЛЬСНЫЙ ИСТОЧНИК ПИТАНИЯ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ С КОРОНООБРАЗУЮЩИМИ РАЗРЯДНЫМИ ЭЛЕКТРОДАМИ 1996
  • Бочков Виктор Дмитриевич
  • Зыков Александр Максимович
  • Гнедин Игорь Николаевич
RU2115214C1
Электростатический нагнетатель 2020
  • Карелин Виктор Георгиевич
  • Карелин Георгий Викторович
  • Петухов Валерий Михайлович
  • Субботин Роман Владимирович
  • Субботин Григорий Алексеевич
RU2742696C1
УСТРОЙСТВО ДЛЯ ОЗОНИРОВАНИЯ ВОЗДУХА 2013
  • Лепёхин Николай Михайлович
  • Присеко Юрий Степанович
  • Пуресев Николай Иванович
  • Филиппов Валентин Георгиевич
RU2555659C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВЫСОКИХ И СВЕРХВЫСОКИХ ДАВЛЕНИЙ В ЖИДКОСТИ 2010
  • Картелев Анатолий Яковлевич
RU2436647C1
ЭЛЕКТРОГАЗОДИНАМИЧЕСКИЙ ГЕНЕРАТОР-2 1993
  • Макашев Андрей Порфирьевич
RU2065246C1
УСТРОЙСТВО ДЛЯ РАССЕИВАНИЯ ТУМАНА 2018
  • Палей Алексей Алексеевич
RU2681227C1
ЭЛЕКТРОГАЗОДИНАМИЧЕСКИЙ ВЕТРОАГРЕГАТ-3 1996
  • Макашев Андрей Порфирьевич
RU2114318C1

Иллюстрации к изобретению RU 2 621 386 C1

Реферат патента 2017 года СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в бытовых помещениях, производственных цехах, медицинских кабинетах, овощехранилищах и т.д. Способ увеличения скорости электрического ветра, заключающийся в подаче постоянного напряжения на электроды, расположенные рядами параллельно потоку газа, при этом последовательно с постоянным напряжением подается импульсное напряжение, при этом частота импульсов выбирается из диапазона от 0 до 30 кГц, а длительность импульса выбирается значительно меньше периода следования импульсов. Устройство для увеличения скорости ионного ветра, характеризующееся тем, что источник постоянного напряжения подключен через токоограничивающий элемент к электродам, а параллельно электродам, после токоограничивающего элемента, через конденсатор подключен генератор высоковольтных импульсов. Техническим результатом предлагаемого изобретения является увеличение скорости электрического ветра и увеличение КПД. 2 н.п. ф-лы, 5 ил.

Формула изобретения RU 2 621 386 C1

1. Способ увеличения скорости электрического ветра, заключающийся в подаче постоянного напряжения на электроды, расположенные рядами параллельно потоку газа, отличающийся тем, что последовательно с постоянным напряжением подается импульсное напряжение, при этом частота импульсов выбирается из диапазона от 0 до 30 кГц, а длительность импульса выбирается значительно меньше периода следования импульсов.

2. Устройство для увеличения скорости ионного ветра, отличающееся тем что, источник постоянного напряжения подключен через токоограничивающий элемент к электродам, а параллельно электродам, после токоограничивающего элемента, через конденсатор подключен генератор высоковольтных импульсов.

Документы, цитированные в отчете о поиске Патент 2017 года RU2621386C1

СПОСОБ УВЕЛИЧЕНИЯ СКОРОСТИ ЭЛЕКТРИЧЕСКОГО ВЕТРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Верещагин Николай Михайлович
  • Шемарин Кирилл Владимирович
RU2313732C2
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ И ПОДДЕРЖАНИЯ ОПРЕДЕЛЕННЫХ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ ВОЗДУХА В ВЕГЕТАЦИОННЫХ КАМЕРАХ 1926
  • Грошевой Г.В.
SU4426A1
US 0007497893 B2, 03.03.2009
СВЕТИЛЬНИК СВЕТОДИОДНЫЙ ПРОМЫШЛЕННЫЙ 2013
  • Ивлиев Юрий Вячеславович
RU2540398C1
Приспособление для изгибания вручную фанерных листов в коробчатую форму 1929
  • Теплиц М.Л.
SU17716A1
ИОННЫЙ ВЕНТИЛЯТОР-ФИЛЬТР 2009
  • Ксенз Николай Васильевич
  • Меликова Ольга Викторовна
  • Сидорцов Иван Георгиевич
  • Тюрин Сергей Владимирович
RU2431785C2
УСТРОЙСТВО ДЛЯ ОЗОНИРОВАНИЯ ВОЗДУХА 2013
  • Лепёхин Николай Михайлович
  • Присеко Юрий Степанович
  • Пуресев Николай Иванович
  • Филиппов Валентин Георгиевич
RU2555659C2
УСТРОЙСТВО ДЛЯ ВЕНТИЛЯЦИИ ВОЗДУХА 2011
  • Верещагин Николай Михайлович
  • Королёв Андрей Евгеньевич
  • Шемарин Кирилл Владимирович
RU2492394C2
ЭЛЕКТРОФИЛЬТР 2013
  • Палей Алексей Алексеевич
RU2525539C1
ИОННЫЙ ВЕНТИЛЯТОР-ФИЛЬТР 2000
  • Файн В.Б.
  • Смирнягин Е.В.
  • Иванова С.А.
RU2181466C1
БИПОЛЯРНЫЙ ГЕНЕРАТОР ИОНОВ 2009
  • Реута Виктор Павлович
  • Туктагулов Айдар Фархатович
RU2388972C1

RU 2 621 386 C1

Авторы

Верещагин Николай Михайлович

Васильев Владимир Владимирович

Даты

2017-06-05Публикация

2016-05-04Подача