СИСТЕМА ТОПЛИВОПИТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2017 года по МПК F02C9/26 

Описание патента на изобретение RU2622683C1

Изобретение относится к области двигателестроения, в частности к системам топливопитания газотурбинных двигателей (ГТД) летательного аппарата (ЛА).

Известна система топливопитания газотурбинного двигателя, содержащая регулятор, связанный с датчиками параметров работы двигателя, насос высокого давления (плунжерный) и основной топливный насос (центробежный) для подачи топлива, переключатели подключения насосов с устройствами управления, связанными с регулятором, а также датчики давления топлива, установленные на выходе насосов и связанные с регулятором (см. патент RU 122705, опубл. 10.12.2012 г., кл. F02C 9/26).

Недостатком известной системы топливопитания является снижение КПД центробежного насоса при уменьшении величины потребляемого расхода топлива.

Параметры основного топливного насоса выбираются исходя из обеспечения максимального КПД при максимальном расходе топлива в двигатель. Необходимость обеспечения подачи топлива в двигатель в широком диапазоне потребных расходов топлива (отношение максимального расхода топлива к минимальному расходу может быть более 50) приводит к работе с низким КПД основного топливного насоса при обеспечении малых расходов топлива в двигатель, например, на режиме крейсерского полета. Работа с низким КПД основного топливного насоса при неблагоприятных внешних условиях может вызвать перегрев топлива в системе питания.

Кроме того, недостатком известной системы топливопитания, при работе на режимах с малым потреблением топлива и подаче топлива к дозаторам от плунжерного насоса высокого давления, является потеря энергии, затраченной на повышение давления топлива.

При работе двигателя на режимах с малым расходом топлива величина потребного давления топлива за насосом высокого давления значительно превышает величину потребного давления топлива на входе в агрегаты дозирования. Это приводит к необходимости дросселирования (уменьшения) давления топлива при подаче топлива от насоса высокого давления к дозатору топлива. Во время дросселирования топлива механическая энергия, затраченная на повышение давления топлива в насосе высокого давления, теряется, переходя в тепловую и вызывая нагрев топлива.

Техническим результатом, на достижение которого направлено изобретение, является повышение энергетической эффективности системы топливопитания.

Для достижения указанного технического результата в системе топливопитания газотурбинного двигателя, которая содержит регулятор, связанный с датчиками параметров работы двигателя, насос высокого давления и основной топливный насос для подачи топлива, переключатели подключения насосов с устройствами управления, связанными с регулятором, а также датчики давления топлива, установленные на выходе насосов и связанные с регулятором, установлен регулируемый гидроприводной топливный насос, содержащий дросселирующий элемент с сервомотором, шестеренный гидромотор и шестеренный насос, которые кинематически связаны между собой, и датчик давления топлива на выходе, при этом вход в гидромотор через дросселирующий элемент гидравлически связан с выходом насоса высокого давления, выход из шестеренного гидромотора гидравлически связан с выходом из шестеренного насоса, а сервомотор дросселирующего элемента гидравлически связан с переключателем.

Отличительные признаки, а именно: установка регулируемого гидроприводного топливного насоса, содержащего дросселирующий элемент с сервомотором, шестеренный гидромотор и шестеренный насос, которые кинематически связаны между собой, и датчик давления топлива на выходе, и то, что при этом вход в гидромотор через дросселирующий элемент гидравлически связан с выходом насоса высокого давления, выход из шестеренного гидромотора гидравлически связан с выходом из шестеренного насоса, а сервомотор дросселирующего элемента гидравлически связан с переключателем, обеспечивают возможность использования энергии давления топлива, отбираемого от насоса высокого давления, для повышения давления топлива, поступающего на вход в шестеренный насос. Расход топлива, отбираемый от насоса высокого давления для привода шестеренного гидромотора, объединяется с расходом топлива, подаваемым шестеренным насосом. Суммарная величина расхода топлива в 2-3 раза выше, чем величина расхода топлива, отбираемая от насоса высокого давления. Это позволяет уменьшить отбор топлива от насоса высокого давления и тем самым снизить подогрев топлива в системе топливопитания.

Таким образом, энергетическая эффективность системы топливопитания повышается за счет следующих факторов:

- уменьшения расхода топлива, а следовательно, и величины мощности, необходимой для привода насоса высокого давления;

- уменьшение подогрева топлива за счет перехода энергии давления топлива в механическую энергию, а не в тепловую как в прототипе;

- основной топливный насос подключается на более высоких режимах подачи топлива и работает с большим КПД.

Также при отказе основного топливного насоса система топливопитания с гидроприводным топливным насосом может обеспечить большую величину расхода топлива, тем самым увеличивая величину располагаемой тяги ГТД ЛА.

Предложенная система топливопитания представлена на чертеже и описана ниже.

Система содержит топливный насос высокого давления 1, выполненный в виде плунжерного насоса с регулируемой производительностью, основной топливный насос 2, выполненный в виде центробежного насоса, включающего и отключающего подачу топлива по гидравлической команде. Насос высокого давления 1 и основной топливный насос 2 связаны механическим приводом с ГТД (не показан).

Система также содержит гидроприводной топливный насос 3, который состоит из шестеренного гидромотора 4, шестеренного насоса 5 и дросселирующего элемента 6 с сервомотором. Шестеренный гидромотор 4 и шестеренный насос 5 кинематически связаны между собой (например, приводной рессорой). Выход из шестеренного гидромотора 4 и выход из шестеренного насоса 5 объединены расходной гидравлической магистралью. На выходе из гидроприводного топливного насоса 3 установлен обратный клапан 7.

Входы в насос высокого давления 1, основной топливный насос 2 и гидроприводной топливный насос 3 гидравлическими расходными магистралями связаны с топливной системой ЛА 8.

В гидравлической магистрали, соединяющей топливную систему ЛА 8 с вводом в насосы 1, 2 и 3, установлен датчик давления 9. На выходе из насоса высокого давления 1 установлен датчик давления 10, на выходе из основного топливного насоса 2 установлен датчик давления 11, на выходе из гидроприводного топливного насоса 3 установлен датчик давления 12. Датчики давления 9, 10, 11 и 12 подключены к регулятору 13 электрическими цепями. Регулятор 13 может быть выполнен в виде электронного цифрового регулятора.

Выход из насоса высокого давления 1 гидравлическими расходными магистралями связан с гидроприводным топливным насосом 3 и переключателем 14 насоса высокого давления 1.

Выход из основного топливного насоса 2 гидравлическими расходными магистралями связан с переключателем 14 насоса высокого давления 1 и переключателем 15 основного топливного насоса 2.

Переключатель 14 насоса высокого давления 1 и переключатель 15 основного топливного насоса 2 конструктивно могут быть выполнены в виде одного объединенного переключателя.

Выход переключателя 14 насоса высокого давления 1 связан расходными гидравлическими магистралями с электрогидравлическими элементами автоматики 16 (например, электрогидропреобразователями, электрогидроусилителями, электрогидравлическими клапанами) и агрегатами механизации 17 ГТД (например, гидроцилиндрами управления положением направляющих аппаратов компрессора ГТД, гидроцилиндрами управления соплом и др.).

Выход переключателя 15 основного топливного насоса 2 связан расходной гидравлической магистралью с агрегатом дозирования топлива 18.

Переключатель 14 связан командной гидравлической магистралью 19 с насосом высокого давления 1.

Переключатель 15 связан командной гидравлической магистралью 20 с основным топливным насосом 2.

Переключатель 15 основного топливного насоса 2 связан командной гидравлической магистралью 21 с сервомотором дросселирующего элемента 6.

Управление сервомотором дросселирующего элемента 6 конструктивно может быть осуществлено от переключателя 14 насоса высокого давления 1, или от отдельного агрегата, связанного гидравлически с сервомотором дросселирующего элемента 6, а электроцепями с регулятором 13.

К регулятору 13 подключены электрическими цепями датчики 22 контроля параметров ГТД, переключатели 14 и 15, электроисполнительные элементы автоматики 16, агрегаты механизации двигателя 17, агрегат дозирования топлива 18.

Система работает следующим образом.

Из топливной системы ЛА 8 топливо поступает на вход в топливный насос высокого давления 1, на вход в основной топливный насос 2 и на вход в гидроприводной топливный насос 3. Регулятор 13 контролирует величину давления топлива на входе в насосы системы топливопитания по электрическому сигналу от датчика 9.

Насос высокого давления 1 повышает давление топлива и подает его к гидроприводному топливному насосу 3 и переключателю 14. Регулятор 13 по данным, полученным с датчиков 22 о параметрах ГТД, управляет величиной давления на выходе из насоса высокого давления 1, выдавая электрическую команду на переключатель 14. В переключателе 14 электрическая команда преобразуется в гидравлическую, которая по командной гидравлической магистрали 19 поступает в насос высокого давления 1. Регулятор 13 контролирует величину давления топлива по электрическому сигналу от датчика 10.

Из переключателя 14 по расходным гидравлическим магистралям топливо с высоким давлением поступает к электрогидравлическим элементам автоматики 16 и агрегатам механизации двигателя 17.

На низких режимах работы ГТД регулятор 13 выдает электрический сигнал переключателю 15 на отключение основного топливного насоса 2. Переключатель 15 преобразует электрический сигнал в гидравлическую команду и по командной гидравлической магистрали 20 подает гидравлическую команду основному топливному насосу 2 на отключение подачи топлива.

От насоса высокого давления 1 топливо с высоким давлением по расходной гидравлической магистрали подводится к дросселирующему элементу 6 гидроприводного топливного насоса 3 и далее к шестеренному гидромотору 4. Расход топлива через шестеренный гидромотор 4 определяется площадью открытого проходного сечения дросселирующего. элемента 6 и перепадом давлений топлива на нем. Проходное сечение дросселирующего элемента 6 определяется его положением, которое регулируется гидравлической командой, поступающей к сервомотору дросселирующего элемента 6 по командной гидравлической магистрали 21 от переключателя 15. Величина расхода топлива через шестеренный гидромотор 4 определяет частоту вращения гидромотора 4 и кинематически связанного с ним шестеренного насоса 5.

Аналогичным образом работа гидроприводного топливного насоса 3 производится для варианта конструктивного исполнения с управлением сервомотором дросселирующего элемента 6 переключателем 14, а также для варианта конструктивного исполнения управления сервомотором отдельным агрегатом.

Из топливной системы ЛА 8 топливо по расходным магистралям поступает в шестеренный насос 5, в нем давление топлива повышается, расходные топливные магистрали с выхода шестеренного гидромотора 4 и выхода шестеренного насоса 5 объединяются, и топливо через обратный клапан 7 поступает к переключателю 15.

Регулятор 13 контролирует величину давления топлива за гидроприводным топливным насосом 3 по электрическому сигналу с датчика 12 и управляет давлением топлива на выходе из гидроприводного топливного насоса 3 изменением частоты вращения шестеренного гидромотора 4, выдавая электрическую команду на переключатель 15, в котором электрические команды преобразуются в гидравлическую команду к сервомотору дросселирующего элемента 6.

От переключателя 15 топливо поступает в агрегат дозирования топлива 18.

На режимах работы ГТД с большим расходом топлива регулятор 13 выдает электрический сигнал на переключатель 15 на включение основного топливного насоса 2. Переключатель 15 преобразует электрический сигнал в гидравлическую команду и по командной гидравлической магистрали 20 подает гидравлическую команду основному топливному насосу 2 на включение подачи топлива.

Основной топливный насос 2 повышает давление топлива и подает его к переключателям 14 и 15. Регулятор 13 контролирует величину давления топлива на выходе из основного топливного насоса 2 по электрическому сигналу с датчика 11.

При росте давления топлива за основным топливным насосом 2 до заданной величины регулятор 13 выдает на переключатель 15 электрическую команду на отключение гидроприводного топливного насоса 3. Переключатель 15 преобразует электрическую команду в гидравлическую и по командной гидравлической магистрали 21 подает ее на сервомотор дросселирующего элемента 6. Сервомотор, перемещаясь, перекрывает проходное сечение и отключает подвод топлива от насоса высокого давления 1 к шестеренному гидромотору 4. Обратный клапан 7 закрывается и препятствует обратному перетоку топлива через гидроприводной насос 3.

От основного топливного насоса 2 через переключатель 15 топливо поступает в агрегат дозирования топлива 18.

При отказе насоса высокого давления 1 регулятор 13 выдает на переключатель 14 электрические команды на отключение насоса высокого давления 1 и на подключение подачи топлива от основного топливного насоса 2 к электрогидравлическим элементам автоматики 16 и агрегатам механизации двигателя 17.

Таким образом, предложенная система топливопитания газотурбинного двигателя позволяет повысить энергетическую эффективность и снизить подогрев топлива за счет уменьшения отбора топлива от топливного насоса высокого давления, а также за счет работы основного топливного насоса на режимах с большей величиной КПД.

Похожие патенты RU2622683C1

название год авторы номер документа
СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2002
  • Жодзишский В.А.
  • Кокин Г.В.
RU2228455C2
ДВУХКАНАЛЬНАЯ СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2014
  • Мельников Игорь Анатольевич
  • Слотин Олег Борисович
  • Фокин Алексей Николаевич
RU2553915C1
Двухканальная система топливопитания и регулирования газотурбинного двигателя (ГТД) 2018
  • Слотин Олег Борисович
  • Макасеев Леонид Иванович
  • Мельников Игорь Анатольевич
RU2680475C1
Двухканальная система топливопитания и регулирования газотурбинного двигателя 2019
  • Сёмин Владимир Васильевич
RU2700989C1
СИСТЕМА ТОПЛИВОПИТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2006
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2329387C2
СИСТЕМА ТОПЛИВОПОДАЧИ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2001
  • Горбунов Л.Ц.
  • Маленков В.И.
  • Юминов В.Г.
RU2194181C1
СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2007
  • Слотин Олег Борисович
  • Мельников Игорь Анатольевич
RU2352802C1
СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2006
  • Слотин Олег Борисович
  • Мельников Игорь Анатольевич
RU2322600C1
Система подачи топлива в камеру сгорания газотурбинного двигателя 2015
  • Гуревич Оскар Соломонович
  • Гулиенко Анатолий Иванович
RU2619518C1
СИСТЕМА ТОПЛИВОПОДАЧИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА 2002
  • Думов В.И.
  • Лебедев В.А.
  • Марчуков Е.Ю.
  • Погосян М.А.
  • Федюкин В.И.
  • Чепкин В.М.
RU2211347C1

Иллюстрации к изобретению RU 2 622 683 C1

Реферат патента 2017 года СИСТЕМА ТОПЛИВОПИТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Система топливопитания газотурбинного двигателя относится к области двигателестроения, в частности к системам топливопитания газотурбинных двигателей летательного аппарата. Система содержит регулятор, связанный с датчиками параметров работы двигателя, насос высокого давления и основной топливный насос для подачи топлива, переключатели подключения насосов с устройствами управления, связанными с регулятором, а также датчики давления топлива, установленные на выходе насосов и связанные с регулятором. В системе установлен регулируемый гидроприводной топливный насос, который содержит дросселирующий элемент с сервомотором, шестеренный гидромотор и шестеренный насос, кинематически связанные между собой, и датчик давления топлива на выходе. При этом вход в шестеренный гидромотор через дросселирующий элемент гидравлически связан с выходом насоса высокого давления, выход из шестеренного гидромотора гидравлически связан с выходом из шестеренного насоса, а сервомотор дросселирующего элемента гидравлически связан с переключателем. Изобретение позволяет повысить энергетическую эффективность и снизить подогрев топлива за счет уменьшения отбора топлива от топливного насоса высокого давления, а также за счет работы основного топливного насоса на режимах с большей величиной КПД. 1 ил.

Формула изобретения RU 2 622 683 C1

Система топливопитания газотурбинного двигателя, содержащая регулятор, связанный с датчиками параметров работы двигателя, насос высокого давления и основной топливный насос для подачи топлива, переключатели подключения насосов с устройствами управления, связанными с регулятором, а также датчики давления топлива, установленные на выходе насосов и связанные с регулятором, отличающаяся тем, что в системе установлен регулируемый гидроприводной топливный насос, содержащий дросселирующий элемент с сервомотором, шестеренный гидромотор и шестеренный насос, кинематически связанные между собой, и датчик давления топлива на выходе, при этом вход в шестеренный гидромотор через дросселирующий элемент гидравлически связан с выходом насоса высокого давления, выход из шестеренного гидромотора гидравлически связан с выходом из шестеренного насоса, а сервомотор дросселирующего элемента гидравлически связан с переключателем.

Документы, цитированные в отчете о поиске Патент 2017 года RU2622683C1

Роторный питатель 1957
  • Шпарберг Е.М.
SU122705A1
RU 2063532 C1, 10.07.1996
FR 2931885 A1, 04.12.2009.

RU 2 622 683 C1

Авторы

Мельников Игорь Анатольевич

Слотин Олег Борисович

Жодзишский Валерий Аронович

Штеренберг Леонид Геннадьевич

Даты

2017-06-19Публикация

2016-08-12Подача