СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ Российский патент 2017 года по МПК E21B47/10 E21B49/08 G01F1/44 

Описание патента на изобретение RU2623389C1

Предлагаемое изобретение относится к способам определения состава водонефтяной смеси в скважине, в частности к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины поступает нефтеводяная смесь, добываемая из выделенного сегмента скважины.

Измерение состава многофазного потока в стволе скважины является важной задачей при контроле и мониторинге добычи. Это востребовано, главным образом, в высокопродуктивных скважинах с сложным заканчиванием, в частности в многозабойных скважинах и скважинах с регуляторами притока, позволяя оптимизировать добычу нефти, снижая дебит или прекращая добычу из сегментов скважины с высокой обводненностью продукции.

В скважинных многофазных расходомерах обычно используется комбинация трубки Вентури (измеряется падение давления в горле трубки Вентури) и устройств для измерения свойств многофазной смеси. Указанные устройства могут представлять собой гамма-денситометр (например, US 6,776,054), емкостный измеритель фазового состава (US 20120041681) и др.

Так, в заявке US 20120041681 описано применение емкостного измерителя фазового состава. Основной недостаток этого способа заключается в низкой точности измерения обводненности при высоких значениях (более 30%) этой величины.

Техническим результатом, обеспечиваемым при реализации предлагаемого изобретения, является повышение точности и надежности определения обводненности добываемой нефтеводяной смеси во всем диапазоне значений этой величины.

В соответствии с предлагаемым способом в скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины поступает нефтеводяная смесь, добываемая из выделенного сегмента скважины. В процессе добычи осуществляют измерения давления на входе в трубку Вентури и в горловине трубки Вентури, а также измерения температуры потока добываемой нефтеводяной смеси на входе в трубку Вентури и температуры стенки трубки Вентури в горловине трубки Вентури. По результатам измерений давления и температуры определяют обводненность нефтеводяной смеси, добываемой из выделенного сегмента скважины.

В соответствии с одним из вариантов осуществления изобретения дополнительно проводят измерения давления и температуры добываемой нефтеводяной смеси за выпускным отверстием трубки Вентури. При этом для измерения температуры за выпускным отверстием трубки Вентури могут быть использованы датчики температуры, установленные на расстоянии 10-20 диаметров трубки Вентури после горловины трубки Вентури.

В соответствии с еще одним вариантом осуществления изобретения все измерения температуры осуществляют при изменении дебита или прекращении добычи.

В соответствии с одним вариантом осуществления изобретения для измерения температуры на входе в трубку Вентури используют датчики температуры, установленные на расстоянии 1-2 диаметра трубки Вентури до начала сужения трубки Вентури.

Изобретение поясняется чертежами, где на фиг. 1 приведена схема трубки Вентури, на фиг. 2 показана зависимость коэффициентов Джоуля-Томпсона для воды и некоторых углеводородов от давления при температуре 80°С, на фиг. 3 приведена зависимость адиабатических коэффициентов для воды и некоторых углеводородов от давления при температуре 80°С, на фиг. 4 показана зависимость нагрева нефтеводяной смеси за выпускным отверстием трубки Вентури вследствие эффекта Джоуля-Томсона от обводненности, на фиг. 5 показано расчетное радиальное распределение скоростей (пунктирные линии) и температуры в начале сужения и в горловине трубки Вентури, на фиг. 6 приведена зависимость повышения температуры стенок в горловине трубки Вентури от обводненности, на фиг. 7 - расчетная зависимость амплитуды адиабатических изменений температуры от обводненности для изменения давления δР=10 бар.

Настоящее изобретение включает измерение давлений, а также измерение температуры, характеризующее фазовый состав добываемой смеси, в трубке Вентури. В скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины поступает нефтеводяная смесь, добываемая из выделенного сегмента скважины. Количество трубок Вентури определяется количеством сегментов скважины, для которых нужно определить обводненность добываемой нефтеводяной смеси. Обводненность добываемой нефтеводяной смеси определяют с помощью измерения давления и температуры, что является важным для долговременного мониторинга добычи нефти, поскольку современные датчики давления и температуры могут более 10 лет работать в условиях, существующих в стволе скважины. Предлагаемый способ может быть использован в сочетании с известными способами, что позволяет повысить точность определения обводненности добываемой нефтеводяной смеси во всем диапазоне значений этой величины.

В соответствии с изобретением для определения обводненности используют следующие температурные эффекты в потоке добываемой из выделенного сегмента нефтеводяной смеси, которые зависят от состава нефтеводяной смеси:

- нагревание потока в пристеночной области и стенок в горловине трубки Вентури вследствие эффектов вязкой диссипации,

- нагревание потока нефтеводяной смеси вследствие необратимого падения давления в процессе торможения потока после прохождения через трубку Вентури (эффект Джоуля-Томпсона),

- изменения температуры потока, вызванные резкими изменениями давления в скважине, которые зависят от состава водонефтяной смеси.

Схема трубки Вентури приведена на Фиг. 1. Здесь (1) - вход в трубку Вентури, (2) - горловина, (3) - выпускное отверстие трубки Вентури, T2w - температура стенок в горловине трубки Вентури.

Измерения давления осуществляют посредством датчиков давления (например, электронными датчиками абсолютного давления GE UNIK 5000), а измерения температуры - посредством высокочувствительных датчиков температуры, например калиброванных тонкопленочных платиновых термометров сопротивления Hayashi Denko CRZ-1632-100-A-1. Измерение температуры стенок в горловине трубки Вентури можно проводить через канал, просверленный перпендикулярно оси трубки, в котором располагался датчик температуры. Для герметизации и теплового контакта этот канал заполнялся теплопроводящим полимером.

Как следует из одномерных уравнений для количества движения и энергии, температура потока в трубке Вентури определяется следующим выражением:

где Р1, Р2 и Р3 представляют собой значения статического давления на входе в трубку Вентури, в горловине и за выпускным отверстием соответственно; ΔР(х) представляет собой необратимое падение давления, T1 - температура потока добываемой нефтеводяной смеси на входе в трубку Вентури, ρ, ср, μJT и η - плотность, теплоемкость, коэффициент Джоуля-Томпсона и адиабатический коэффициент нефтеводяной смеси соответственно.

Температура нефтеводяной смеси за выпускным отверстием трубки Вентури (где V=V1) определяется полными необратимыми потерями давления и коэффициентом Джоуля-Томпсона флюида:

В случае гомогенной смеси нефти и воды (что типично для потока, проходящего через горловину трубки Вентури в нефтяных скважинах), плотность нефтеводяной смеси, адиабатический коэффициент и коэффициент Джоуля-Томпсона зависят от обводненности (γ) (см. уравнения 3-65) и изменения температуры нефтеводяной смеси в трубке Вентури могут быть использованы для определения доли воды в смеси.

Поскольку нефть представляет собой сложную смесь различных углеводородов, адиабатический коэффициент и коэффициент Джоуля-Томпсона в каждом конкретном случае следует определять из результатов лабораторных исследований зависимости между давлением, объемом и температурой с использованием образцов нефти из конкретных скважин. На Фиг. 2 и 3 представлены примеры зависимости этих коэффициентов от давления (при температуре 80°С) для некоторых углеводородов, присутствующих в нефти. Из указанных диаграмм видно, что, например, при давлении 150 бар коэффициент Джоуля-Томпсона нефти примерно в 1,5-2 раза больше, чем для воды, и адиабатический коэффициент больше в 4-6 раз.

На Фиг. 4 показаны расчетные зависимости изменений температуры потока за выпускным отверстием трубки Вентури от обводненности. Расчеты выполнялись для значений коэффициента Джоуля-Томпсона для воды -0,02 К/бар и для нефти -0,04 К/бар. Разница давлений между входным отверстием и горловиной трубки Вентури Р12 находилась в интервале 0,7-0,8 бар. Скорость потока на входе в трубку Вентури - 2 м/с. Такая скорость является типичной для размещенных в стволе скважины устройств контроля в высокопродуктивных скважинах.

Из этого чертежа видно, что в зависимости от содержания воды изменение разности температур T13 составляет около 7 мК, что представляет собой величину, измеримую современными устройствами, размещаемыми в стволе скважины, и может быть использовано для оценки содержания воды в нефтеводяной смеси.

Высокочувствительные датчики температуры следует устанавливать в следующих точках: 1-2 диаметра трубки Вентури до начала сужения трубки Вентури (для измерения температуры на входе) и 10-20 диаметров трубки Вентури после горловины трубки Вентури (для измерения повышения температуры, вызванного эффектом Джоуля-Томсона).

Другим, значительно более сильным, тепловым эффектом, который может быть использован для определения обводненности, является нагрев стенки трубки Вентури, вызванный вязкой диссипацией. Численные расчеты показывают, что вследствие эффекта вязкой диссипации в потоке нефтеводяной смеси температура в пограничном слое у стенки трубки Вентури и температура стенки в горловине может существенно превышать температуру T1 на входе трубки Вентури.

На Фиг. 5 показано расчетное радиальное распределение скоростей (пунктирные линии) и температуры в начале сужения и в горловине трубки Вентури. Расчеты выполнялись для скорости нефтеводяной смеси на входе в трубку Вентури 3,5 м/с. Из чертежа видно, что толщина динамического пограничного слоя в этом случае составляет около 1 мм. Толщина теплового пограничного слоя существенно меньше (менее 0,3 мм), и увеличение температуры стенки достигает 650 мК.

Повышение температуры стенок в горловине трубки Вентури зависит от состава нефтеводяной смеси и может быть использовано для оценки обводненности. На Фиг. 6 показана расчетная зависимость повышения температуры стенок от обводненности. Расчеты выполнялись для средней скорости потока на входе трубки Вентури 2 м/с и вязкости нефти, в 3 раза превышающей вязкость воды. Из чертежа видно, что температура стенок сильно зависит от обводненности: 150 мК для чистой воды и 580 мК для нефти. Вследствие гораздо более сильного температурного сигнала в этом случае можно получить более точную оценку обводненности смеси, чем из повышения температуры вследствие эффекта Джоуля-Томсона за выходным отверстием трубки Вентури.

Температура стенок в горловине трубки Вентури зависит от геометрии трубки Вентури, дебита скважины, характеристик нефти и содержания воды. Основываясь на моделировании трубки Вентури (используя методы вычислительной гидродинамики) и лабораторных экспериментах, следует подготовить набор предварительных расчетов для различных характеристик нефти. Указанные предварительные расчеты следует использовать для оценки обводненности в скважинах.

Другой тепловой эффект, который может быть использован для определения фазового состава добываемой нефтеводяной смеси, представляет собой адиабатический нагрев или адиабатическое охлаждение нефтеводяной смеси, вызванное резкими изменениями давления δР в стволе скважины (например, при изменении дебита или прекращении добычи):

Эти изменения определяются адиабатическим коэффициентом смеси (4). На Фиг. 7 показана расчетная зависимость амплитуды адиабатических изменений температуры от обводненности для изменения давления δР=10 бар.

Специфика предлагаемого способа определения фазового состава добываемой нефтеводяной смеси по ее адиабатическому нагреву/охлаждению заключается в использовании измерений температуры за выпускным отверстием трубки Вентури, что обеспечивает надежную гомогенизацию потока, тем самым уменьшая неопределенность, связанную с нахождением измерителя температуры в отдельной фазе, а не в гомогенизированной смеси.

Согласно настоящему изобретению предлагается оценивать обводненность добываемой нефтеводяной смеси, основываясь на высокоточном измерении давления и температуры потока на входе (P1, T1) в трубку Вентури и измерении температуры стенки T2w и давления Р2 в горловине трубки Вентури; измерения могут быть также дополнены измерением давления потока и температуры потока за выходным отверстием (Р3, Т3) трубки Вентури в процессе добычи нефти. Вычисление обводненности выполняют по формулам (3)-(6), с учетом характеристик добываемой нефти.

Вычисление обводненности по нагреву стенок в горловине трубки Вентури выполняют в соответствии со значениями P1, T1, Р2, T2w, сравнивая результаты вычислений с соответствующими предварительными расчетами, основанными на характеристиках добываемой нефти.

Возможно также осуществление измерений всеми указанными измерителями изменений температуры потока через трубку Вентури, вызванных резкими изменениями давления при изменении дебита или прекращении добычи. Вычисление содержания воды выполняют по формуле (7), принимая во внимание зависимость адиабатического коэффициента (5) от обводненности и свойств добываемой нефти.

Предлагаемый способ может обеспечить надежную оценку обводненности нефтеводяной смеси, добываемой из любого выделенного сегмента скважины, с помощью размещенной в стволе скважины трубки Вентури путем получения нескольких значений, относящихся к одной и той же обводненности. Это обеспечивает возможность уменьшения неопределенности окончательного значения обводненности, используя совместный анализ всех или только некоторых из указанных измерений, принимая во внимание соответствующие ошибки измерения и значения температурных сигналов.

В случае выявления сегмента с высокой обводненностью добываемой нефтеводяной смеси добычу из такого сегмента скважины прекращают.

Похожие патенты RU2623389C1

название год авторы номер документа
Гидродинамический сепаратор жидкости с возможностью пропускания средств очистки и диагностики (СОД) 2023
  • Ткачев Андрей Олегович
  • Бакшеев Сергей Васильевич
  • Николенко Игорь Николаевич
  • Труханов Кирилл Алексеевич
  • Чугунов Андрей Алексеевич
  • Десятниченко Егор Сергеевич
  • Дряхлов Вячеслав Сергеевич
RU2807372C1
СПОСОБ ИЗМЕРЕНИЯ МНОГОФАЗНОГО ПОТОКА С ПРИМЕНЕНИЕМ ОДНОГО ВЫСОКОАКТИВНОГО И ОДНОГО ИЛИ БОЛЕЕ НИЗКОАКТИВНЫХ РАДИОАКТИВНЫХ ИСТОЧНИКОВ 2009
  • Коркин Роман Владимирович
RU2477790C2
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ ТРЕЩИН ГИДРОРАЗРЫВА ПЛАСТА ДЛЯ ГОРИЗОНТАЛЬНОЙ СКВАЖИНЫ 2020
  • Шако Валерий Васильевич
  • Пименов Вячеслав Павлович
  • Малания Георгий Тристанович
  • Котляр Лев Андреевич
  • Кортуков Дмитрий Алексеевич
RU2741888C1
УСТРОЙСТВО СКВАЖИНЫ И СПОСОБ РАЗРАБОТКИ МНОГОПЛАСТОВОЙ НЕФТЯНОЙ ЗАЛЕЖИ 2007
  • Городнов Владимир Павлович
  • Городнов Константин Владимирович
RU2344272C2
СПОСОБ РАЗРАБОТКИ ОБВОДНЕННОГО НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 1992
  • Демидов В.П.
  • Кисмерешкин В.П.
RU2057906C1
СПОСОБ ЭКСПЛУАТАЦИИ ЗАЛЕЖИ УГЛЕВОДОРОДОВ 2014
  • Красовский Александр Викторович
  • Скрылев Сергей Александрович
  • Кустышев Александр Васильевич
  • Немков Алексей Владимирович
  • Шандрыголов Захар Николаевич
  • Свентский Сергей Юрьевич
  • Канашов Владимир Петрович
  • Антонов Максим Дмитриевич
RU2564722C1
СПОСОБ ИССЛЕДОВАНИЯ ВНУТРЕННЕГО СТРОЕНИЯ ГАЗОНЕФТЯНЫХ ЗАЛЕЖЕЙ 1999
  • Гаврилов В.П.
  • Штырлин В.Ф.
RU2143064C1
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖИ ВЫСОКОВЯЗКОЙ НЕФТИ ИЛИ БИТУМА ПРИ ТЕРМИЧЕСКОМ ВОЗДЕЙСТВИИ 2018
  • Амерханов Марат Инкилапович
  • Ахметзянов Фаниль Муктасимович
  • Ахметшин Наиль Мунирович
RU2673825C1
СПОСОБ И СИСТЕМА ИЗМЕРЕНИЯ РАСХОДОВ МНОГОФАЗНОГО И/ИЛИ МНОГОКОМПОНЕНТНОГО ФЛЮИДА, ДОБЫВАЕМОГО ИЗ НЕФТЕГАЗОВОЙ СКВАЖИНЫ 2020
  • Сыресин Денис Евгеньевич
  • Врабие Иван Витальевич
  • Спесивцев Павел Евгеньевич
  • Хуссене Жан-Филипп
  • Тевени Бертран
  • Корнеев Виктор Викторович
  • Тарелко Николай Федорович
RU2754656C1
Способ определения компонентного состава и расхода потока многофазной смеси, устройство и система для его реализации 2023
  • Кузьмин Максим Игоревич
  • Грехов Иван Викторович
  • Сотцев Алексей Валерьевич
  • Акбашев Рамир Варисович
RU2814443C1

Иллюстрации к изобретению RU 2 623 389 C1

Реферат патента 2017 года СПОСОБ ОПРЕДЕЛЕНИЯ ОБВОДНЕННОСТИ НЕФТЕВОДЯНОЙ СМЕСИ, ДОБЫВАЕМОЙ ИЗ НЕФТЯНОЙ СКВАЖИНЫ

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из выделенного сегмента скважины. Технический результат - повышение точности и надежности определения обводненности добываемой нефтеводяной смеси во всем диапазоне значений этой величины. По способу в скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из выделенного сегмента скважины. При этом количество размещаемых трубок Вентури определяют количеством сегментов скважины, для которых нужно определить обводненность добываемой нефтеводяной смеси. В процессе добычи осуществляют измерения давления на входе в трубку Вентури и в горловине трубки Вентури. Посредством датчиков температуры осуществляют измерения температуры потока добываемой нефтеводяной смеси на входе в трубку Вентури и температуры стенки трубки Вентури в горловине трубки. По результатам измерений давления и температуры определяют обводненность нефтеводяной смеси, добываемой из выделенного сегмента скважины. 4 з.п. ф-лы, 7 ил.

Формула изобретения RU 2 623 389 C1

1. Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины, в соответствии с которым:

- в скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из выделенного сегмента скважины, при этом количество размещаемых трубок Вентури определяют количеством сегментов скважины, для которых нужно определить обводненность добываемой нефтеводяной смеси,

- в процессе добычи осуществляют измерения давления на входе в трубку Вентури и в горловине трубки Вентури,

- посредством датчиков температуры осуществляют измерения температуры потока добываемой нефтеводяной смеси на входе в трубку Вентури и температуры стенки трубки Вентури в горловине трубки, и

по результатам измерений давления и температуры определяют обводненность нефтеводяной смеси, добываемой из выделенного сегмента скважины.

2. Способ по п. 1, в соответствии с которым определяют обводненность добываемой нефтеводяной смеси, используя результаты дополнительного измерения давления и температуры добываемой нефтеводяной смеси за выпускным отверстием трубки Вентури.

3. Способ по п. 1, в соответствии с которым определяют обводненность добываемой нефтеводяной смеси, используя измерения вариаций температуры добываемого флюида в трубке Вентури при изменении давления в скважине, связанного с изменением дебита или прекращением/началом добычи.

4. Способ по п. 1, в соответствии с которым для измерения температуры на входе в трубку Вентури используют датчики температуры, установленные на расстоянии 1-2 диаметра трубки Вентури до начала сужения трубки Вентури.

5. Способ по п. 2, в соответствии с которым для измерения температуры за выпускным отверстием трубки Вентури используют датчики температуры, установленные на расстоянии 10-20 диаметров трубки Вентури после горловины трубки Вентури.

Документы, цитированные в отчете о поиске Патент 2017 года RU2623389C1

ТОСКИ Э
и др., Эволюция измерений многофазных потоков и их влияние на управление эксплуатацией, НТЖ, Технологии ТЭК, декабрь 2003, с
Устройство для выпрямления многофазного тока 1923
  • Ларионов А.Н.
SU50A1
СПОСОБ ИЗМЕРЕНИЯ МНОГОФАЗНОГО ПОТОКА С ПРИМЕНЕНИЕМ ОДНОГО ВЫСОКОАКТИВНОГО И ОДНОГО ИЛИ БОЛЕЕ НИЗКОАКТИВНЫХ РАДИОАКТИВНЫХ ИСТОЧНИКОВ 2009
  • Коркин Роман Владимирович
RU2477790C2
СПОСОБ ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ГАЗОЖИДКОСТНОГО ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Лукьянов Эдуард Евгеньевич
  • Каюров Константин Николаевич
  • Еремин Виктор Николаевич
RU2301887C2
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ 2003
  • Хисамов Р.С.
  • Файзуллин И.Н.
  • Магдеева О.В.
  • Рябов И.И.
  • Магдеева Е.Ш.
  • Ахметшина А.С.
  • Хамитов Р.А.
RU2231632C1
US 20120041681 A1, 16.02.2012
US 20080234939 A1, 25.09.2008.

RU 2 623 389 C1

Авторы

Шако Валерий Васильевич

Пименов Вячеслав Павлович

Тевени Бертран

Сидорова Мария Викторовна

Бурухин Александр Александрович

Рыжиков Никита Ильич

Даты

2017-06-26Публикация

2016-07-21Подача