ПРОТИВОПЕХОТНОЕ НЕКОНТАКТНОЕ ВЗРЫВАТЕЛЬНОЕ УСТРОЙСТВО Российский патент 2017 года по МПК F42B23/10 F42C13/00 

Описание патента на изобретение RU2623403C2

Изобретение относится к сейсмическим противопехотным неконтактным взрывательным устройствам (НВУП), применяемым в инженерных боеприпасах при устройстве минно-взрывных заграждений.

Известны различные системы сейсмического принципа действия по обнаружению проникновения человека в охраняемую территорию. Системы по обнаружению проникновения человека предназначены для охраны периметра охраняемой зоны. По этой причине эти системы, как правило, являются стационарными с использованием большого количества датчиков (геофонов), расположенных по периметру в два или три ряда. Каждый датчик связан с пультом наблюдения двухпроводным или многожильным кабелем на значительные расстояния.

НВУП относится к совершенно другому классу устройств сейсмического принципа действия, которым предъявляются требования:

автономность, малые габариты и масса, работоспособность в диапазоне температур ±50°C, жесткие требования по механическим перегрузкам, герметичность, автоматическая установка на местности с помощью универсальных минных раскладчиков, в том числе с вертолетов.

В рассматриваемых устройствах обнаружения интерес представляет сам принцип (алгоритм) распознавания движущегося человека по сейсмическому сигналу.

Из уровня техники известен алгоритм распознавания проникновения человека в охраняемый периметр (см. патент на изобретение RU 2209467 С2, опубликованный 27.07.2003 г., «Устройство и способ обнаружения проникновения человека через контур запрещенной зоны»), который построен по классической схеме: сейсмический датчик, предусилитель, полосовой фильтр, усилитель, пороговое устройство, блок цифровой обработки. Блок цифровой обработки выделяет максимальное значение амплитуд принятых сигналов, сравнивает их в каждые промежутки времени и, в случае совпадения частоты повторения с частотой повторения сигналов, создаваемых человеком (60…120 шагов/мин), принимает решение об обнаружении нарушителя.

Данное устройство имеет следующие недостатки:

- полоса поступающего сейсмосигнала фильтруется в диапазоне 5…100 Гц с последующей фильтрацией в предварительно найденном по результатам калибровки района установки системы диапазоне: снизу 15…35 Гц, сверху 45…90 Гц. В этом случае устройство может срабатывать от сигналов, создаваемых движущейся колесной и гусеничной техникой (БМП, БТР) по неровной дороге с доминирующей частотой в диапазоне 10…40 Гц,

- логика работы данной системы построена на том, что нарушитель пересекает охраняемый периметр равномерно со скоростью от 60 шагов/мин до 120 шагов/мин. В этих условиях возможен пропуск цели, так как НВУП должно реагировать на идущего, бегущего или ползущего человека, что приводит к расширению периодичности поступления сигналов в обе стороны от диапазона 60 шагов/мин … 120 шагов/мин,

- следующий признак, заложенный для распознавания нарушителя, это нарастание интенсивности сигнала при приближении к рубежу и спад после его пересечения. Это не приемлемо для НВУП, так как срабатывание взрывателя и подрыв боеприпаса должны происходить до пересечения траверзы идущим человеком,

- при обстреле минного поля артиллерийским и стрелковым огнем в грунте возникают сейсмические колебания с различными параметрами по частоте, амплитуде, периодичности следования. Это часто приводит к срабатыванию НВУП, следствием чего является невыполнение поставленной задачи. В рассматриваемом устройстве защита от взрыва отсутствует.

Из уровня техники также известно сейсмическое устройство обнаружения объектов (см. патент на изобретение RU 2175772 С1, опубликованный 10.11.2001 г., «Сейсмическое устройство обнаружения объектов»), которое направлено на повышение помехоустойчивости устройств охраны периметров объектов и подступов к объектам. Устройство обнаружения содержит сейсмопреобразователь, выход которого соединен с входом схемы обработки сигналов, соединенный со схемой принятия решения. В устройство дополнительно введен канал частотного детектирования, вход которого соединен с выходом сейсмопреобразователя, а выход - со схемой принятия решения. Решение о вторжении в охраняемую зону принимается при условии одновременного наличия сигнала на выходе схемы обработки сигнала и его отсутствия в канале частотного детектирования.

Данное устройство не обеспечит помехоустойчивость при воздействии сигналов техногенных помех, например взрыва снарядов или огня стрелкового оружия на поле боя. Так, возбуждаемые в грунте от этих воздействий сейсмические волны характеризуются большим спектром своих параметров по амплитуде, частотному спектру в зависимости от типа грунта, длительности, периоду следования, скорости нарастания сигнала и др.

Наиболее близким к предлагаемому изобретению аналогом является сейсмический энергетический обнаружитель сигналов (см. патент на изобретение RU 2236026 С1, опубликованный 10.09.2004 г., «Сейсмический энергетический обнаружитель сигналов»). Сущность известного обнаружителя сигналов заключается в том, что сигнал после фильтрации и усиления поступает на первое пороговое устройство и на вход линии задержки (время задержки 0,5 с) исходя из предположения, что человек за это время делает хотя бы один шаг. С выхода линии задержки сигнал поступает на вход второго порогового устройства. С выходов обоих пороговых устройств сигналы поступают на вход схемы принятия решения. Схема принятия решения контролирует выходы обоих пороговых устройств, на которые одновременно поступают сигналы двух соединенных выборок, следующих друг за другом длительностью по 0,5 с.

Данное устройство не помехоустойчиво к сигналам, создаваемым взрывом снарядов и огнем стрелкового оружия. Кроме того, при движении человека шагом, бегом или ползком сигнал не укладывается в интервал 0,5 с.

Задачей предлагаемого изобретения является создание противопехотного неконтактного взрывательного устройства, лишенного вышеуказанных недостатков.

Технический результат заключается в повышении помехоустойчивости противопехотного неконтактного взрывательного устройства от различного вида сейсмических помех техногенного и естественного происхождения и локализации зоны обнаружения для эффективного поражения живой силы противника.

Разработанное авторами противопехотное неконтактное взрывательное устройство содержит последовательно соединенные сейсмопреобразователь, предусилитель, полосовой фильтр, усилитель, выпрямитель-интегратор, автоматический регулятор усиления и исполнительное устройство. НВУП дополнительно содержит трехуровневое пороговое устройство, установленное на выходе выпрямителя-интегратора, при этом выход низкого уровня трехуровневого порогового устройства соединен с входом автоматического регулятора усиления, а выходы высокого и среднего уровней порогового устройства соединены с входами классификатора шага движущего человека. Один выход классификатора подключен к входу временного устройства, которое выполнено с возможностью определения времени обработки поступающих с сейсмопреобразователя сигналов, и к входу счетчика количества шагов, выход которого соединен с исполнительным устройством. Второй выход классификатора шага движущегося человека, выполненный с возможностью контроля требуемой длительности между двумя последовательными шагами, и выход временного устройства через схему логического сложения соединены с входом обнуления счетчика шагов.

Классификатор шага движущегося человека дополнительно содержит схему контроля скорости нарастания огибающей сейсмического сигнала, два входа которой соединены с выходами высокого и среднего уровней порогового устройства, а выход соединен с первым входом схемы контроля длительности сигнала, создаваемого шагом человека, второй вход которой соединен с выходом среднего уровня порогового устройства, а выход соединен с первым входом схемы контроля длительности паузы между шагами, второй вход которой соединен с выходом высокого уровня порогового устройства.

На Фиг. 1 представлена структурная схема НВУП.

На Фиг. 2 показана структурная схема классификатора шага человека.

На Фиг. 3 изображена осциллограмма сейсмического сигнала, создаваемого идущим человеком.

На Фиг. 4 изображена осциллограмма сейсмического сигнала при взрыве заряда взрывчатого вещества.

На Фиг. 5 изображена осциллограмма сейсмического сигнала при выстрелах из автомата.

На Фиг. 6 изображено графическое представление выделения признаков шага человека.

НВУП (Фиг. 1) содержит последовательно соединенные сейсмопреобразователь (1), предусилитель (2), полосовой фильтр (3), усилитель (4), выпрямитель-интегратор (5), автоматический регулятор усиления (6) и исполнительное устройство (12). НВУП дополнительно содержит трехуровневое пороговое устройство (7), установленное на выходе выпрямителя-интегратора (5), при этом выход низкого уровня (15) трехуровневого порогового устройства (7) соединен с автоматическим регулятором усиления (6). Выходы высокого (13) и среднего (14) уровней порогового устройства (7) соединены с входами классификатора шага движущего человека (8). Один выход (16) классификатора (8) подключен к входу временного устройства (10), которое выполнено с возможностью определения времени обработки поступающих с сейсмопреобразователя (1) сигналов, и к входу счетчика количества шагов (9), выход которого соединен с исполнительным устройством (12). Второй выход (17) классификатора (8), выполненный с возможностью контроля требуемой длительности между двумя последовательными шагами, и выход временного устройства (10) через схему логического сложения (11) соединены с входом обнуления (18) счетчика шагов (9).

Классификатор шага движущегося человека (Фиг. 2) дополнительно содержит схему контроля скорости нарастания огибающей сейсмического сигнала (19), два входа которой соединены с выходами высокого (13) и среднего (14) уровней порогового устройства (7), а выход соединен с первым входом (22) схемы контроля длительности сигнала, создаваемого шагом человека (20), второй вход (23) которой соединен с выходом среднего уровня (14) порогового устройства (7), а выход соединен с первым входом (24) схемы контроля длительности паузы между шагами (21), второй вход (25) которой соединен с выходом высокого уровня (13) порогового устройства (7).

Работает НВУП следующим образом,

Сейсмический сигнал (Фиг. 1) преобразуется сейсмоприемником (1) в электрический, который усиливается предусилителем (2), фильтруется полосовым фильтром (3) в диапазоне 50…110 Гц, усиливается усилителем (4) и формируется выпрямителем-интегратором (5) в виде огибающей сигнала, после чего поступает на вход трехуровневого порогового устройства (7). Выходной сигнал низкого уровня (15) трехуровневого порогового устройства (7) управляет автоматическим регулятором усиления (6), что позволяет автоматически регулировать коэффициент усиления усилителя (4). Значения величины напряжения высокого (13) и среднего (14) уровней трехуровневого порогового устройства (7) устанавливаются исходя из необходимости согласования зоны срабатывания НВУП и зоны поражения боеприпаса, который подрывается этим НВУП.

Фронт нарастания сейсмического сигнала (Фиг. 4, 5) от выстрела или взрыва имеет значительно большую скорость нарастания, чем у сигнала, создаваемого движущимся человеком (Фиг. 3). Тогда (Фиг. 6) время τн, за которое значение величины напряжения огибающей сейсмического сигнала изменяется от значения величины напряжения среднего уровня (14) до значения величины напряжения высокого уровня (13), при взрыве или выстреле на порядок меньше, чем от сигнала, создаваемого движущимся человеком. Этот параметр зависит от характера движения человека, типа грунта, влажности грунта и других условий.

Сигналы с выходов высокого (13) и среднего (14) уровней порогового устройства (7) поступают на входы классификатора шага человека (8).

Классификатор шага человека (8) содержит (Фиг. 2) схему (19) контроля скорости нарастания напряжения огибающей сейсмического сигнала по времени τн, за которое значение величины напряжения огибающей сейсмического сигнала изменяется от значения величины напряжения среднего уровня (14) до значения величины напряжения высокого уровня (13), схему (20) контроля длительности сигнала шага τш по верхнему уровню (13) и схему (21) контроля паузы τп между двумя последовательными шагами по среднему уровню (14). Если схема (19) контроля скорости нарастания сигнала определяет, что τн соответствует признаку сигнала от движущегося человека, поступает разрешение на работу схемы (20) контроля длительности сигнала. При условии, что длительность сигнала шага находится в пределах нескольких сот миллисекунд (признак сигнала шага человека), схема (20) дает разрешение на работу схемы (21) контроля паузы между двумя последовательными сигналами (шагами). Если схема (21) контроля длительности паузы по среднему уровню (14) величины напряжения принимает решение, что сигнал по совокупности трех признаков соответствует шагу человека, сигнал первого шага записывается в память счетчика шагов (9) (Фиг. 1), одновременно запускается временное устройство (10) на установленное значение времени, в данном случае на 5 секунд. После этого производится аналогичная квалификация признаков сигнала второго шага, если признаки соответствуют признакам шага человека, сигнал (второй шаг) записывается в память счетчика шагов (9). При условии, что в течение 5 секунд в счетчик (9) записано установленное количество шагов, в данном случае четыре шага, счетчик (9) формирует исполнительную команду на срабатывание исполнительного устройства (12). Если в течение 5 секунд в память счетчика (9) не поступает четыре сигнала, квалифицированные как шаг человека, или хотя бы в одном случае из трех длительность паузы между шагами не соответствует требуемому диапазону, схема логического сложения (11) обнуляет счетчик шагов (9), НВУП возвращается в исходное состояние.

Похожие патенты RU2623403C2

название год авторы номер документа
Дистанционное противопехотное неконтактное взрывательное устройство 2023
  • Конюхов Игорь Анатольевич
  • Кочнев Валерий Васильевич
RU2809321C1
СЕЙСМИЧЕСКИЙ НЕКОНТАКТНЫЙ ДАТЧИК ОБНАРУЖЕНИЯ ЧЕЛОВЕКА 2017
  • Анисимов Артем Юрьевич
  • Гладышев Дмитрий Евгеньевич
  • Кандидатов Иван Анатольевич
  • Попов Андрей Викторович
RU2671885C1
ПРОТИВОТРАНСПОРТНАЯ ОСКОЛОЧНАЯ МИНА ДИСТАНЦИОННОЙ УСТАНОВКИ (ВАРИАНТЫ) 2015
  • Буслаев Иван Павлович
  • Школьников Юлий Романович
  • Калинин Игорь Валерьевич
  • Ершков Юрий Германович
  • Ермаков Сергей Алексеевич
  • Деревягин Сергей Михайлович
  • Рожков Владимир Анатольевич
  • Мягких Виктор Владимирович
  • Полознов Андрей Николаевич
  • Колдасов Антон Сергеевич
  • Жарова Светлана Юрьевна
RU2601646C1
СЕЙСМИЧЕСКОЕ УСТРОЙСТВО ОБНАРУЖЕНИЯ ОБЪЕКТОВ 2000
  • Крюков И.Н.
  • Иванов В.А.
RU2175772C1
УСТРОЙСТВО КЛАССИФИКАЦИИ СЕЙСМИЧЕСКИХ СИГНАЛОВ 2003
  • Крюков И.Н.
  • Иванов В.А.
  • Матвеев В.В.
RU2236027C1
СЕЙСМИЧЕСКОЕ УСТРОЙСТВО ОБНАРУЖЕНИЯ И КЛАССИФИКАЦИИ ОБЪЕКТОВ 1993
  • Хорев Петр Федорович
  • Мащенко Владимир Алексеевич
  • Сироткин Константин Николаевич
  • Щитов Владимир Петрович
  • Лебедев Денис Михайлович
RU2040807C1
ПРОТИВОПЕХОТНАЯ ОСКОЛОЧНАЯ МИНА ДИСТАНЦИОННОЙ УСТАНОВКИ 2012
  • Жуков Михаил Борисович
  • Попов Виктор Александрович
  • Самсонов Евгений Ильич
  • Хомутский Владимир Евгеньевич
  • Шведченко Николай Николаевич
  • Чеботов Александр Сергеевич
RU2493535C1
Взрыватель противопехотных мин 2019
  • Фомин Владлен Владимирович
  • Азанов Анатолий Александрович
  • Сидоров Алексей Викторович
  • Завьялов Максим Сергеевич
  • Сумской Сергей Николаевич
  • Волков Дмитрий Валерьевич
  • Митяев Борис Иванович
  • Попов Андрей Викторович
RU2740457C1
МНОГОЦЕЛЕВАЯ КАССЕТНАЯ МИНА ДИСТАНЦИОННОЙ УСТАНОВКИ 2016
  • Буслаев Иван Павлович
  • Калинин Игорь Валерьевич
  • Ершков Юрий Германович
  • Ермаков Сергей Алексеевич
  • Деревягин Сергей Михайлович
  • Полознов Андрей Николаевич
  • Бельтюков Александр Семенович
  • Манышев Юрий Валентинович
RU2638594C1
Способ обеспечения требуемой вероятности ложных срабатываний устройства классификации сейсмических сигналов 2018
  • Анисимов Владимир Иванович
  • Кравцов Александр Владимирович
  • Русин Павел Владимирович
  • Комяков Алексей Владимирович
RU2697021C1

Иллюстрации к изобретению RU 2 623 403 C2

Реферат патента 2017 года ПРОТИВОПЕХОТНОЕ НЕКОНТАКТНОЕ ВЗРЫВАТЕЛЬНОЕ УСТРОЙСТВО

Изобретение относится к сейсмическим противопехотным неконтактным взрывательным устройствам, применяемым в инженерных боеприпасах при устройстве минно-взрывных заграждений. Техническим результатом является повышение помехоустойчивости противопехотного неконтактного взрывательного устройства от различного вида сейсмических помех техногенного и естественного происхождения и локализации зоны обнаружения для эффективного поражения живой силы противника. Противопехотное неконтактное взрывательное устройство содержит последовательно соединенные сейсмопреобразователь, предусилитель, полосовой фильтр, усилитель, выпрямитель-интегратор, автоматический регулятор усиления и исполнительное устройство. Дополнительно содержит трехуровневое пороговое устройство, установленное на выходе выпрямителя-интегратора, при этом выход низкого уровня трехуровневого порогового устройства соединен с входом автоматического регулятора усиления, а выходы высокого и среднего уровней порогового устройства соединены с входами классификатора шага движущего человека, при этом один выход классификатора подключен к входу временного устройства, которое выполнено с возможностью определения времени обработки поступающих с сейсмопреобразователя сигналов, и к входу счетчика количества шагов, выход которого соединен с исполнительным устройством, а второй выход классификатора шага движущегося человека, выполненный с возможностью контроля требуемой длительности между двумя последовательными шагами, и выход временного устройства через схему логического сложения соединены с входом обнуления счетчика шагов. 1 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 623 403 C2

1. Противопехотное неконтактное взрывательное устройство, содержащее последовательно соединенные сейсмопреобразователь, предусилитель, полосовой фильтр, усилитель, выпрямитель-интегратор, автоматический регулятор усиления и исполнительное устройство, отличающееся тем, что дополнительно содержит трехуровневое пороговое устройство, установленное на выходе выпрямителя-интегратора, при этом выход низкого уровня трехуровневого порогового устройства соединен с входом автоматического регулятора усиления, а выходы высокого и среднего уровней порогового устройства соединены с входами классификатора шага движущего человека, при этом один выход классификатора подключен к входу временного устройства, которое выполнено с возможностью определения времени обработки поступающих с сейсмопреобразователя сигналов, и к входу счетчика количества шагов, выход которого соединен с исполнительным устройством, а второй выход классификатора шага движущегося человека, выполненный с возможностью контроля требуемой длительности между двумя последовательными шагами, и выход временного устройства через схему логического сложения соединены с входом обнуления счетчика шагов.

2. Противопехотное неконтактное взрывательное устройство по п. 1, отличающееся тем, что классификатор шага движущегося человека дополнительно содержит схему контроля скорости нарастания огибающей сейсмического сигнала, два входа которой соединены с выходами высокого и среднего уровней порогового устройства, а выход соединен с первым входом схемы контроля длительности сигнала, создаваемого шагом человека, второй вход которой соединен с выходом среднего уровня порогового устройства, а выход соединен с первым входом схемы контроля длительности паузы между шагами, второй вход которой соединен с выходом высокого уровня порогового устройства.

Документы, цитированные в отчете о поиске Патент 2017 года RU2623403C2

СЕЙСМИЧЕСКИЙ ЭНЕРГЕТИЧЕСКИЙ ОБНАРУЖИТЕЛЬ СИГНАЛОВ 2003
  • Крюков И.Н.
  • Иванов В.А.
  • Дюгованец А.П.
  • Онуфриев Н.В.
  • Шуалов А.Г.
RU2236026C1
СЕЙСМИЧЕСКОЕ УСТРОЙСТВО ОБНАРУЖЕНИЯ ОБЪЕКТОВ 2000
  • Крюков И.Н.
  • Иванов В.А.
RU2175772C1
US 2014060371 A1, 06.03.2014
US 4970958 A, 20.11.1990.

RU 2 623 403 C2

Авторы

Гайдук Виктор Антонович

Кандидатов Иван Анатольевич

Мошков Василий Алексеевич

Попов Виктор Александрович

Соловьев Олег Владимирович

Сучинский Александр Генрихович

Даты

2017-06-26Публикация

2015-12-16Подача