Лазер с продольной накачкой Российский патент 2017 года по МПК H01S3/06 

Описание патента на изобретение RU2623688C1

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам с диодной накачкой.

Известны твердотельные лазеры, содержащие активный элемент с резонатором и лампу накачки [1]. Преобразование излучения лампы в лазерное излучение недостаточно эффективно из-за неоптимального согласования спектра излучения лампы со спектром поглощения активного элемента и из-за несовпадения процесса горения лампы с кинетикой поглощения-излучения активного элемента.

Эти недостатки устранены в лазерах с диодной накачкой. Лазерные диодные решетки и матрицы, применяемые для накачки твердотельных лазеров, обладают по сравнению с лампами более высоким КПД, оптимальным для накачки спектром излучения и управляемыми параметрами импульса накачки. Наиболее близким по технической сущности к предлагаемому техническому решению является твердотельный лазер, описанный в [2]. Этот твердотельный лазер содержит последовательно установленные источник излучения накачки в виде лазерной диодной матрицы, первое дихроичное зеркало резонатора, активный элемент, поляризатор, электрооптический затвор и второе зеркало резонатора.

Необходимость использования первого зеркала одновременно как элемента резонатора лазера и входного окна для излучения накачки ограничивает возможности конструктивного исполнения зеркала (например, при необходимости использования зеркала, обладающего кривизной) и ухудшает его характеристики по каждому из указанных назначений. В результате снижается выходная энергия излучения лазера и надежность глухого зеркала.

Задачей изобретения является повышение эффективности накачки, повышение энергии выходного излучения лазера и повышение надежности лазера.

Поставленная задача решается за счет того, что в известном лазере с продольной накачкой, содержащем источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала, активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что угол между нормалью к торцу и продольной осью стержня превышает угол полного внутреннего отражения, боковая поверхность стержня, противоположная скошенному торцу, выполнена в виде окна, прозрачного для лазерного излучения, источник накачки установлен у скошенного торца активного элемента таким образом, чтобы излучение накачки проникало в активный элемент, одно из зеркал резонатора установлено напротив окна в активном элементе на продолжении оптической оси резонатора, причем между источником накачки и скошенным торцом активного элемента введен оптический клин, вершина которого обращена к острому углу между торцом и боковой поверхностью активного элемента, основание клина выполнено отражающим, а зазоры между источником накачки, оптическим клином и активным элементом минимально возможны.

Основание оптического клина может иметь отражающее покрытие.

Основание оптического клина может быть наклонено под углом полного внутреннего отражения к падающему на него излучению накачки.

Между зеркалами резонатора может быть введен модулятор добротности.

Боковые поверхности оптического клина могут иметь просветляющее покрытие на длине волны накачки.

На фиг. 1 представлена схема лазера. Фиг. 2 иллюстрирует ход лучей излучения накачки с введенным оптическим клином (фиг. 2а) и в его отсутствие (фиг. 2б). На фиг. 3 показан ход крайнего из лучей накачки, испытывающих полное внутреннее отражение на оптическом окне в активном элементе.

Активный элемент 1 установлен между зеркалами резонатора - глухим зеркалом 2 и полупрозрачным зеркалом 3. Перед скошенным торцом активного элемента установлен источник накачки - лазерная диодная матрица 4. Последовательно с активным элементом внутри резонатора установлен модулятор добротности 5. Между источником накачки и скошенным торцом активного элемента введен оптический клин 6.

Устройство работает следующим образом.

При включении источника оптической накачки 4 его излучение проникает в активный элемент 1 через клин 6 и скошенный торец активного элемента. В процессе накачки модулятор добротности 5 выключен, и добротность резонатора, образуемого зеркалами 2, 3, недостаточна для возникновения лазерной генерации. По завершении процесса накачки, обеспечивающего заданный уровень возбуждения активного элемента, включается модулятор добротности, в результате чего восстанавливается рабочая добротность резонатора и происходит генерация лазерного импульса. Лазерное излучение со стороны скошенного торца отражается от торца и выходит из активного элемента через окно в его боковой поверхности в сторону модулятора 5 и глухого зеркала 2. С противоположной стороны активного элемента лазерное излучение выводится из резонатора через полупрозрачное зеркало 3. Оптический клин 6 наклоняет излучение источника накачки в сторону своего основания. Благодаря этому излучение накачки в области вершины клина входит в активный элемент под меньшим углом к оптической оси активного элемента и, во-первых, без потерь попадает в площадь скошенного торца, а во-вторых, отражается от окна в боковой поверхности активного элемента под углом полного внутреннего отражения, и далее проходит в рабочий объем активного элемента. Излучение накачки, направленное в сторону основания клина 6, отражается основанием клина в сторону скошенного торца активного элемента и также проникает в его рабочий объем.

На фиг. 2б) пунктиром показаны лучи, не попадающие в рабочую апертуру активного элемента или выходящие из него через окно в боковой поверхности.

Из построения на фиг. 3 с учетом закона преломления Снеллиуса [3] следуют соотношения для условия полного внутреннего отражения γ*=90°, Sinγ*=1.

, где nаэ - показатель преломления активного элемента.

Откуда в обозначениях фиг. 3

угол полного внутреннего отражения

Аналогично

Пример. Активный элемент выполнен из фосфатного стекла ГЛС22, активированного ионами неодима. Клин изготовлен из оптического стекла К8. Показатели преломления этих материалов nаэ~1,6; nк~ 1,52. Углы при вершинах активного элемента и оптического клина равны, соответственно, α=45°; θ=30°.

При этих данных угол ϕ, рассчитанный по приведенным соотношениям, ϕ=22°.

Расходимость излучения источника накачки не превышает ±20°, отклонение крайнего луча от лазерного диода, расположенного в нижней части матрицы, не превышает критического угла ϕ=22°, значит все излучение накачки проникает в активный элемент прямо или после полного внутреннего отражения от поверхности бокового окна активного элемента. Излучение от лазерного диода в верхней части матрицы также проникает в активный элемент непосредственно или после отражения от основания клина.

Таким образом, согласно данному техническому решению, излучение накачки беспрепятственно проникает в активный элемент через его торец с высоким коэффициентом пропускания для излучения накачки. Для лазерного излучения этот торец представляет собой стопроцентно отражающее зеркало благодаря расположению под углом, превышающим угол полного внутреннего отражения. Глухое зеркало резонатора освобождено от функции дихроичного зеркала, поэтому имеет максимально высокий коэффициент отражения при сравнительно простом исполнении отражающей поверхности и высокой лучевой стойкости отражающей поверхности. При этом кривизна глухого зеркала может быть любой, например сферической, в соответствии с условиями обеспечения максимальной добротности резонатора. Расстояние от скошенного торца активного элемента до глухого зеркала также может быть произвольным, исходя из конструктивных требований и заданной конфигурации резонатора.

Благодаря введению оптического клина излучение накачки полностью проникает в активный элемент и более эффективно поглощается в его объеме. Тем самым значительно повышается коэффициент полезного действия накачки.

Вследствие указанных особенностей изобретения обеспечивается повышение эффективности накачки, повышение энергии выходного излучения лазера и повышение надежности лазера.

Данный вывод подтвержден положительными результатами изготовления и испытаний макетного образца лазера. После корректировки документации по результатам испытаний лазер будет запущен в производство.

Источники информации

1. Справочник по лазерной технике. Киев, «Технiка», 1978 г., с. 60.

2. LASER-DIODE ARRAYS: Multicolor uncooled diode array efficiently pumps Nd:YAG laser. LaserFocusWorld. 08/01/2007 - прототип.

3. A.H. Матвеев. Оптика. M., «Высшая школа», 1985 г., с. 97.

Похожие патенты RU2623688C1

название год авторы номер документа
Импульсный твердотельный лазер 2016
  • Быков Владимир Николаевич
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Прядеин Владислав Андреевич
  • Садовой Андрей Георгиевич
RU2629685C1
Лазер 2016
  • Быков Владимир Николаевич
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Прядеин Владислав Андреевич
  • Садовой Андрей Георгиевич
RU2623810C1
Твердотельный лазер 2016
  • Быков Владимир Николаевич
  • Вильнер Валерий Григорьевич
RU2635400C1
Твердотельный лазер с модуляцией добротности 2016
  • Быков Владимир Николаевич
  • Вильнер Валерий Григорьевич
  • Волобуев Владимир Георгиевич
  • Прядеин Владислав Андреевич
  • Садовой Андрей Георгиевич
RU2636260C1
Малогабаритный инфракрасный твердотельный лазер 2016
  • Воробьев Алексей Александрович
  • Сахаров Михаил Викторович
  • Автин Анатолий Анатольевич
RU2638078C1
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР 2014
  • Быков Владимир Николаевич
  • Быков Денис Владимирович
  • Вильнер Валерий Григорьевич
  • Волобуев Олег Георгиевич
  • Подставкин Дмитрий Сергеевич
  • Рябокуль Борис Кириллович
  • Турикова Галина Владимировна
RU2554315C1
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ НА ВЫНУЖДЕННОМ КОМБИНАЦИОННОМ РАССЕЯНИИ 2013
  • Московченко Леонид Васильевич
  • Сторощук Остап Богданович
  • Иванов Владимир Николаевич
  • Московченко Артем Леонидович
  • Титов Александр Николаевич
RU2545387C1
ИНФРАКРАСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР 2015
  • Воробьев Алексей Александрович
  • Астраускас Йонос Ионо
  • Дуванов Борис Николаевич
RU2593819C1
МНОГОПРОХОДНЫЙ УСИЛИТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2002
  • Першин С.М.
RU2231879C1
БЛОК ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ МНОГОКАНАЛЬНОГО ЛАЗЕРА 1996
  • Сафонов А.Н.
  • Забелин А.М.
RU2107976C1

Иллюстрации к изобретению RU 2 623 688 C1

Реферат патента 2017 года Лазер с продольной накачкой

Изобретение относится к лазерной технике. Лазер с продольной накачкой содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что угол между нормалью к торцу и продольной осью стержня превышает угол полного внутреннего отражения. Боковая поверхность стержня, противоположная скошенному торцу, выполнена в виде окна, прозрачного для лазерного излучения. Источник накачки установлен у скошенного торца активного элемента таким образом, чтобы излучение накачки проникало в активный элемент. Одно из зеркал резонатора установлено напротив окна в активном элементе на продолжении оптической оси резонатора, причем между источником накачки и скошенным торцом активного элемента введен оптический клин, вершина которого обращена к острому углу между торцом и боковой поверхностью активного элемента. Основание клина выполнено отражающим, а зазоры между источником накачки, оптическим клином и активным элементом минимально возможны. Технический результат заключается в обеспечении возможности повышения эффективности накачки, повышения энергии выходного излучения лазера и повышения надежности лазера. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 623 688 C1

1. Лазер с продольной накачкой, содержащий источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала, отличающийся тем, что активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что угол между нормалью к торцу и продольной осью стержня превышает угол полного внутреннего отражения, боковая поверхность стержня, противоположная скошенному торцу, выполнена в виде окна, прозрачного для лазерного излучения, источник накачки установлен у скошенного торца активного элемента таким образом, чтобы излучение накачки проникало в активный элемент, одно из зеркал резонатора установлено напротив окна в активном элементе на продолжении оптической оси резонатора, причем между источником накачки и скошенным торцом активного элемента введен оптический клин, вершина которого обращена к острому углу между торцом и боковой поверхностью активного элемента, основание клина выполнено отражающим, а зазоры между источником накачки, оптическим клином и активным элементом минимально возможны.

2. Лазер по п. 1, отличающийся тем, что основание оптического клина имеет отражающее покрытие.

3. Лазер по п. 1, отличающийся тем, что основание оптического клина наклонено под углом полного внутреннего отражения к падающему на него излучению накачки.

4. Лазер по п. 1, отличающийся тем, что между зеркалами резонатора введен модулятор добротности.

5. Лазер по п. 1, отличающийся тем, что боковые поверхности оптического клина имеют просветляющее покрытие на длине волны накачки.

Документы, цитированные в отчете о поиске Патент 2017 года RU2623688C1

US 5511085 A1, 23.04.1996
WO 2005114800 A1, 01.12.2005
DE 4015861 C2, 20.01.1994
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ЗИГЗАГООБРАЗНЫМ ХОДОМ ЛУЧЕЙ 2005
  • Волков Александр Сергеевич
  • Иночкин Михаил Владимирович
  • Портной Ефим Лазаревич
RU2295183C2

RU 2 623 688 C1

Авторы

Быков Владимир Николаевич

Вильнер Валерий Григорьевич

Волобуев Владимир Георгиевич

Садовой Андрей Георгиевич

Даты

2017-06-28Публикация

2016-06-24Подача